Trichlornitromethan Chemische Eigenschaften,Einsatz,Produktion Methoden
ERSCHEINUNGSBILD
LEICHT ?LIGE, FARBLOSE FLüSSIGKEIT MIT STECHENDEM GERUCH.
PHYSIKALISCHE GEFAHREN
Die D?mpfe sind schwerer als Luft.
CHEMISCHE GEFAHREN
Kann beim Erhitzen und bei Sto? explodieren. Zersetzung beim Erhitzen und unter Einfluss von Licht unter Bildung giftiger Rauche mit Chlorwasserstoff und Stickstoffoxiden. Reagiert sehr heftig mit alkoholischem Natriumhydroxid, Natriummethoxid, Propargylbromid, Anilin und Hitze.
ARBEITSPLATZGRENZWERTE
TLV: 0,1 ppm (als TWA); Krebskategorie A4 (nicht klassifizierbar als krebserzeugend für den Menschen); (ACGIH 2005).
MAK: 0,1 ppm 0,68 mg/m?Spitzenbegrenzung: überschreitungsfaktor I(1) (DFG 2006).
AUFNAHMEWEGE
Aufnahme in den K?rper durch Inhalation der D?mpfe und durch Verschlucken.
INHALATIONSGEFAHREN
Beim Verdampfen bei 20°C kann sehr schnell eine gesundheitssch?dliche Kontamination der Luft eintreten.
WIRKUNGEN BEI KURZZEITEXPOSITION
WIRKUNGEN BEI KURZZEITEXPOSITION: Tr?nenreizend. Die Substanz reizt stark die Augen, die Haut und die Atemwege. Inhalation des Dampfes kann zu Lungen?dem führen (s.Anm.). Exposition oberhalb der Arbeitsplatzgrenzwerte kann zum Tod führen. Die Auswirkungen treten u.U. verz?gert ein. ?rztliche Beobachtung notwendig.
LECKAGE
Gefahrenbereich verlassen! Fachmann zu Rate ziehen! Ausgelaufene Flüssigkeit m?glichst in abdichtbaren Beh?ltern sammeln. Reste mit Sand oder inertem Absorptionsmittel aufnehmen und an einen sicheren Ort bringen. Pers?nliche Schutzausrüstung: Chemikalienschutzanzug mit umgebungsluftunabh?ngigem Atemschutzger?t.
R-S?tze Betriebsanweisung:
R22:Gesundheitssch?dlich beim Verschlucken.
R26:Sehr giftig beim Einatmen.
R36/37/38:Reizt die Augen, die Atmungsorgane und die Haut.
S-S?tze Betriebsanweisung:
S36/37:Bei der Arbeit geeignete Schutzhandschuhe und Schutzkleidung tragen.
S38:Bei unzureichender Belüftung Atemschutzger?t anlegen.
S45:Bei Unfall oder Unwohlsein sofort Arzt zuziehen (wenn m?glich, dieses Etikett vorzeigen).
Beschreibung
Chloropicrin is a colorless to faint-yellow oily liquid with an
intensely irritating and sharp odor with characteristics of tear
gas. Some common trade names of products containing chloropicrin
include Dolochlor, Aquinite, Nemax, Pic-Chlor, Timberfume,
Profume A, Tri-Clor, and Microlysin. It has
a molecular weight of 164.38, water solubility of 2000 mg l1
at 25°C, and melting and boiling points of 64 and 112°C,
respectively. Chloropicrin is nonflammable and has a vapor
density of 5.7 compared to the vapor density of one assigned to
air. Heating above 234 F results in explosive decomposition of
chloropicrin, leading to the release of toxic gases, including
nitrogen oxides, phosgene, nitrosyl chloride, chlorine, and
carbon monoxide. Chloropicrin is a widely used fungicide that
is primarily used for preplant soil fumigation. Chloropicrin is
used to fumigate stored grain and to treat soil against fungi,
insects, and nematodes either as a stand-alone treatment or in
combination with other fumigants like methyl bromide and
sulfuryl fluoride for enhanced potency. Chloropicrin is also
used to prevent internal decay of wood poles and timber
caused by fungi and insects.
Chemische Eigenschaften
oily colourless liquid
Physikalische Eigenschaften
Colorless to pale yellow, oily liquid with a sharp, penetrating odor. Odor threshold concentration
is 0.78 ppm (quoted, Amoore and Hautala, 1983).
Verwenden
Chloropicrin (PS), nitrotrichloromethane, trichloronitromethane, nitrochloroform, is a slightly oily, colorless, pale to transparent liquid that is nearly stable. It is nonflammable, with a boiling point of approximately 235°F (112°C) and slight water solubility. The vapor density is 5.7, which is heavier than air.
Definition
ChEBI: A C-nitro compound that is nitromethane in which all three hydrogens are replaced by chlorines. It is a severe irritant, and can cause immediate, severe inflammation of the eyes, nose and throat, and significant injuries to the upper and
lower respiratory tract. Formerly stockpiled as a chemical warfare agent, it has been widely used in the US as a soil fumigant, particularly for strawberry crops. It is not approved for use within the European Union.
Allgemeine Beschreibung
Chloropicrin mixture is a variable colored liquid usually colorless to yellow. Chloropicrin is noncombustible and the flammability of the mixture will depend on the other component of the mixture. Chloropicrin vapors are heavier than air and Trichloronitromethane is toxic by inhalation.
Air & Water Reaktionen
Slowly decomposes in water.
Reaktivit?t anzeigen
CHLOROPICRIN is a powerful irritant affecting all body surfaces, more toxic then chlorine. Trichloronitromethane can be shocked into detonation. When heated to decomposition, Trichloronitromethane emits highly toxic fumes of chlorine gas and nitrogen oxides [Sax, 9th ed., 1996, p. 821]. Trichloronitromethane produces a violent reaction with aniline [Jackson, K. E., Chem. Rev., 1934, 14, p. 269] or strong bases in the presence of alcohols (alkoxides) [Ramsey, B. G., et al., J. Am. Chem. Soc., 1966, 88, p. 3059].
Hazard
Very toxic by ingestion and inhalation;
strong eye irritant; pulmonary edema. Questionable
carcinogen.
Health Hazard
Chloropicrin is a strong lachrymator (tear gas) and is severely irritating to eyes, skin and mucosal membranes of the respiratory and gastrointestinal tracts, causing nausea, vomiting, difficulty breathing and respiratory tract inflammation. Because of its high volatility, the main route of human exposure to chloropicrin is inhalation. Damage to the respiratory tract can lead to pulmonary edema and death. Chloropicrin can be absorbed systemically through inhalation, ingestion and the skin. It is severely irritating to the lungs, eyes and skin, causing potentially fatal tissue damage and edema at higher levels. In the atmosphere, it is rapidly degraded and does not deplete the ozone layer.
Landwirtschaftliche Anwendung
Soil fumigant, Nematicide: Not approved for use in EU countries. A U.S. EPA restricted Use Pesticide (RUP) as telone. Chloropicrin is used in the manufacture of the dye-stuff methyl violet
and in other organic syntheses. It has been used as a chemical warfare gas. It is used as a preplant soil fumigant in seed beds and transplant nurseries for control of verticillium wilt, nematodes, weed seeds and insects. In grain elevators, it is used to control insects and rodents. The top four uses in California are on strawberries, tomatoes, bell peppers, and outdoor nursery plants.
Handelsname
BROM-O-GAS®[C]; BROZONE®[C]; CHLOR-O-PIC®; DOWFUME®; FUM-A-CIDE® 15[C]; KLOP®; LARVACIDE®[C]; LARVACIDE 100®; METAPICRIN®; NAMFUME®[C]; NEMAX®; OG25®; PESTMASTER® FUMIGANT 1[C]; PICFUME®; PIC-CHLOR® 16; PICRIDE®; PROFUME A®; PS®; TELONE®; TELONE® C[C]; TERR-O-CIDE® 15[C]; TERR-O-GAS®; TIMBERFUME II®; TRI-CLOR®[C]; TRI-CON®; TRI-FORM®; TRIFUME®[C];
m?gliche Exposition
Chloropicrin is an important insecticide and is used in the manufacture of the dye-stuff methyl
violet and in other organic syntheses. It is used as a fumigant insecticide. It is a riot control and tear agent and
has been used as a military poison gas. Some forms of tear
gas also contain chloropicrin. Since tank trucks, tank cars,
and tank vessels carry this throughout the world in large
quantities, it is a potential problem.
Carcinogenicity
Chloropicrin was genotoxic in bacterial
test systems.
Environmental Fate
Biological. Four Pseudomonas sp., including Pseudomonas putida (ATCC culture 29607)
isolated from soil, degraded chloropicrin by sequential reductive dechlorination. The proposed
degradative pathway is chloropicrin → nitrodichloromethane → nitrochloromethane →
nitromethane + small amounts of carbon dioxide. In addition, a highly water soluble substance
tentatively identified as a peptide was produced by a nonenzymatic mechanism (Castro et al.,
1983).
Photolytic. Photodegrades under simulated atmospheric conditions to phosgene and nitrosyl
chloride. Photolysis of nitrosyl chloride yields chlorine and nitrous oxide (Moilanen et al., 1978;
Woodrow et al., 1983). When aqueous solution of chloropicrin (10
-3 M) is exposed to artificial UV
light (λ <300 nm), protons, carbon dioxide, hydrochloric and nitric acids are formed (Castro and
Belser, 1981).
Chemical/Physical. Releases very toxic fumes of chlorides and nitrogen oxides when heated to
decomposition (Sax and Lewis, 1987). Reacts with alcoholic sodium sulfite solutions and
ammonia to give methanetrisulfonic acid and guanidine, respectively (Sittig, 1985).
Stoffwechselwegen
Although chloropicrin is stable to hydrolytic degradation, it degrades
rapidly and extensively in soil and under photolytic conditions. The primary
degradation and metabolic pathway in the environment and animal
systems involves step-wise dechlorination reactions, followed by fragmentation
and mineralisation to yield low molecular weight components
and carbon dioxide as terminal residues.
Versand/Shipping
UN1580 Chloropicrin, Hazard Class: 6.1;
Labels: 6.1-Poison Inhalation Hazard, Inhalation Hazard
Zone B.
l?uterung methode
Dry with MgSO4 and fractionally distil. [Beilstein 1 IV 106.] EXTREMELY NEUROTOXIC, u s e appropriate precautions.
Inkompatibilit?ten
Chloropicrin decomposes explosively
when heated above 112C. It can be dangerously self-reactive; and, may explode when heated under confinement or
if shocked. Chloropicrin is stable except when it’s heated
to a high temperature; it explosively breaks down, releasing
other poison gases including nitrogen oxides, nitrosyl chloride, chlorine, phosgene, and carbon monoxide. Liquid
chloropicrin (PS) is unstable with high temperatures or
severe shock, particularly when involving containers of
greater than 30 gal capacity. Chloropicrin reacts violently
with aniline, sodium methoxide, and propargyl bromide;
2-bromopropyne and strong oxidizers. Violent reaction with
reducing agents; aniline (especially in presence of heat),
alcoholic sodium hydroxide. Quickly elevated temperatures,
shock, contact with alkali metals or alkaline earth may
cause explosions. It is a strong acid and will react violently
with bases and alkali materials. Liquid attacks some plastics, rubber, and coatings. Chloropicrin reacts with iron,
zinc, light metals including aluminum, magnesium, and
alloys containing these metals. It reacts, sometimes violently, with some types of rubbers and plastics, as well as
some chemicals including common sulfuric acid; and bases.
Contact with metals may evolve explosive hydrogen gas.
Waste disposal
Incineration (816C, 0.5 seconds minimum for primary combustion; 1204C, 1.0 second
for secondary combustion) after mixing with other fuel. The
formation of elemental chlorine may be prevented by injection of steam or using methane as a fuel in the process.
Chloropicrin reacts readily with alcoholic sodium sulfite
solutions to produce methanetrisulfonic acid (which is relatively nonvolatile and less harmful). This reaction has been
recommended for treating spills and cleaning equipment.
Although not specifically suggested as a decontamination
procedure, the rapid reaction of chloropicrin with ammonia
to produce guanidine (LD50 5 500 mg/kg) could be used for
detoxification. The Chemical Manufacturers’ Association has suggested two procedures for disposal of Chloropicrin:
(1) Pour or sift over soda ash. Mix and wash slowly into
large tank. Neutralize and pass to sewer with excess water.
(2) Absorb on vermiculite. Mix and shovel into paper boxes.
Drop into incinerator with afterburner and scrubber. In
accordance with 40CFR165, follow recommendations for the
disposal of pesticides and pesticide containers. Must be disposed properly by following package label directions or by
contacting your local or federal environmental control
agency, or by contacting your regional EPA office.
Trichlornitromethan Upstream-Materialien And Downstream Produkte
Upstream-Materialien
Downstream Produkte