Synthesis and biological evaluation of moxifloxacin-acetyl-1,2,3-1H-triazole-methylene-isatin hybrids as potential anti-tubercular agents against both drug-susceptible and drug-resistant Mycobacterium tuberculosis strains
Abstract
Herein, synthesis and biological evaluation of fourteen moxifloxacin-acetyl-1,2,3-1H-triazole-methylene-isatin hybrids as potential anti-tubercular agents against both drug-susceptible (MTB H37Rv), rifampicin-resistant and multidrug-resistant Mycobacterium tuberculosis strains were reported, and cytotoxicity towards VERO cells as well as inhibitory activity against MTB DNA gyrase were also discussed in this paper. The structure-activity relationship and structure-cytotoxicity relationship demonstrated that substituents on the C-3 and C-5/C-7 positions of isatin framework were closely related with the anti-mycobacterial activity and cytotoxicity. The most active hybrids 8h and 8l (MIC: 0.12–0.5?μg/mL) showed excellent activity which was no inferior to the parent moxifloxacin against the tested drug-susceptible, rifampicin-resistant and multidrug-resistant Mycobacterium tuberculosis strains, demonstrating their potential application as novel anti-tubercular candidates.