成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

Aminoglycosides drugs

Aminoglycoside mainly takes effect on the bacterial ribosome in vivo, inhibiting bacterial protein synthesis as well as undermining the integrity of the bacterial cell membrane. Aminoglycoside, through relying on the energy dependent transport system of Ⅱ in vivo, participates into binding to the 30S ribosomal subunit, causing insertion of erroneous proteins into the cell membrane, resulting in the changes in the cell membrane permeability as well as the leakage of intracellular potassium, adenine nucleoside as well as important substances, further resulting in rapid bacterial cell death. The entering of large amount of aminoglycoside molecule into the bacterial cell is an aerobic energy-consuming process. This process will be inhibits under hypoxic conditions. In present time, the clinical applied aminoglycosides all can effectively inhibit the prokaryotic protein synthesis upon reaching the therapeutic concentrations (≤25 μg/ml). Aminoglycosides have strong bactericidal effect against bacteria in stationary phase, being an stationary-phase bactericidal agents.

1. Antibacterial spectrum and drugs resistance; aminoglycoside has strong antibacterial effect against aerobic gram-negative bacteria such as Escherichia coli, Klebsiella, Enterobacter, Proteus, Shigella, Serratia spp., Salmonella spp. However, its antibacterial effect against Alcaligenes, Moraxella, Citrobacter, Acinetobacter, Brucella, meningococcus and other gram-negative bacteria is poor. It also has poor effect against each group of streptococci (such as group-A streptococci, Streptococcus viridans, and Streptococcus pneumoniae). The majority of Enterococcus is resistant to it. Mycobacterium tuberculosis is sensitive to streptomycin. Aminoglycoside has stronger antibacterial effect in an alkaline environment with Ca2 +, Mg2 +, Na +, NH4 +, K + and other cations being capable of inhibiting the antibacterial activity.

2. The in vivo distribution of aminoglycosides; aminoglycoside has poor absorption upon oral administration; only through intestinal infections can it be distributed to a number of vital organs in the body such as penetrating into the pleural or peritoneal effusions. This class of drugs is primarily subject to renal excretion with relatively high urine concentrations, thus being conducive to the treatment of urinary tract infection. However, they have lower concentration in the bile with poor efficacy in treating the biliary tract infections. They are not easy to penetrate through the blood - brain barrier, and thus not suitable to the central infection.

3. Indications; at present time, aminoglycosides are still commonly used drugs in the domestic clinical practice. It is mainly used for the treatment of severe systemic infections caused by aerobic gram-negative bacilli including biliary tract infections, bone and joint infections, pneumonia, sepsis, urinary tract infection, skin and soft tissue infections. However, in case of treatment of serious infection or sepsis caused unknown pathogens, or severe Gram-negative bacilli sepsis, pneumonia, meningitis, or Staphylococcus aureus or Enterococcus infection, this class of drugs is often combined with other antibiotics. Aminoglycoside has a poor antibacterial effect against Streptococcus while the streptococcus is one of the major strains that caused the upper respiratory tract infection. Therefore, in this case, application of this class of drugs is unreasonable, and can not only delay treatment, but also increase the incidence of adverse reactions.
Medication methods; in case of dealing with serious infections, regardless of whether the patients have normal renal function or not, they should be subject to the first-time impulse amount in order to ensure the achievement of effective concentration in the tissues. The applied dose should be calculated according to the weight with fat subtracted (or standard weight) + 40% × overweight part, since different patients often have greatly varied plasma concentration and half-life, the blood concentration should be monitored in conditions allowed to adjust the dose so that individualized dosing can be achieved.

4. The principle of combination therapy; aminoglycoside, when used in combination with penicillins or cephalosporin, can often lead to synergies effects. The combinations of penicillin and streptomycin have synergistic effect against Streptococcus viridans. Other possible combinations with potential synergistic effect include: the combination with enzyme-resistant semi-synthetic penicillin (such as oxacillin) for treatment of Staphylococcus aureus; the combination with penicillin (or ampicillin) or vancomycin for treatment of Enterococcus; the combination with cephalosporin for the treatment of Klebsiella pneumoniae; the combination with penicillin or ampicillin for the treatment of Listeria; the combination with piperacillin and carbenicillin for the treatment of Pseudomonas aeruginosa.

Precautions
1. Aminoglycosides have cross-allergy with each other with allergic patients disabled.
2. Combination with penicillin G can have synergistic antibacterial effect against almost all kinds of Streptococcus faecalis and its variants such as Streptococcus faecium species and Streptococcus durans. Combination with enough amount of carbenicillin has synergistic antibacterial effect against some sensitive strains of Pseudomonas aeruginosa.
3. Combination with alkaline drugs (such as sodium bicarbonate, aminophylline, etc.) can enhance the antibacterial effectiveness but can also lead to a corresponding increase in the toxicity; combination with strong diuretics (such as furosemide, ethacrynic acid, etc.) can increase the renal toxicity; combination with other ototoxic drugs (such as erythromycin, etc.) can increase the ototoxicity; combination with cephalosporins can increase the renal toxicity.

Click on the specific product, view the latest prices of the products, information, serving information
Structure Chemical Name CAS MF
Neomycin sulfate Neomycin sulfate 1405-10-3 C23H48N6O17S
Gentamicin sulfate Gentamicin sulfate 1405-41-0 C60H127N15O26S
Tobramycin Tobramycin 32986-56-4 C18H37N5O9
Streptomycin sulfate Streptomycin sulfate 3810-74-0 C21H41N7O16S
PAROMOMYCIN SULFATE PAROMOMYCIN SULFATE 1263-89-4 C23H47N5O18S
Streptomycin Streptomycin 57-92-1 C21H39N7O12
SPECTINOMYCIN DIHYDROCHLORIDE SPECTINOMYCIN DIHYDROCHLORIDE 21736-83-4 C14H25ClN2O7
Ribostamycin sulfate Ribostamycin sulfate 53797-35-6 C17H36N4O14S
Kasugamycin hydrochloride Kasugamycin hydrochloride 19408-46-9 C14H25N3O9.ClH
Sisomycin Sulfate Sisomycin Sulfate 53179-09-2 C19H39N5O11S
KANAMYCIN SULFATE KANAMYCIN SULFATE 70560-51-9 C18H38N4O15S
Gentamicin Gentamicin 1403-66-3 C60H123N15O21
Tobramycin sulfate Tobramycin sulfate 79645-27-5 C18H39N5O13S
Isepamicin sulfate Isepamicin sulfate 67814-76-0 C22H45N5O16S
AMIKACIN AMIKACIN 37517-28-5 C22H43N5O13
Spectinomycin Spectinomycin 1695-77-8 C14H24N2O7
Netilmicin sulfate Netilmicin sulfate 56391-57-2 C42H92N10O34S5
Sisomicin Sisomicin 32385-11-8 C19H37N5O7
(2R,3R,4S,5S,6R)-4-Amino-2-[(1S,2S,3R,4S,6R)-4,6-diamino-3-[(2R,3R,6S)-3-amino-6-(aminomethyl)oxan-2-yl]oxy-2-hydroxy-cyclohexyl]oxy-6-(hydroxymethyl)oxane-3,5-diol (2R,3R,4S,5S,6R)-4-Amino-2-[(1S,2S,3R,4S,6R)-4,6-diamino-3-[(2R,3R,6S)-3-amino-6-(aminomethyl)oxan-2-yl]oxy-2-hydroxy-cyclohexyl]oxy-6-(hydroxymethyl)oxane-3,5-diol 34493-98-6 C18H37N5O8
Tobramycin sulfate Tobramycin sulfate 49842-07-1 C18H39N5O13S
Etimicin Sulphate Etimicin Sulphate 362045-44-1 C21H43N5O7.H2O4S
Butirosin Butirosin 12772-35-9 C21H41N5O12
RIBOSTAMYCIN SULFATE SALT RIBOSTAMYCIN SULFATE SALT 25546-65-0 C17H34N4O10
NETILMICIN NETILMICIN 56391-56-1 C21H41N5O7
KANAMYCIN KANAMYCIN 59-01-8 C18H36N4O11
Framycetine sulphate BP98 Framycetine sulphate BP98
Etimicin Etimicin 59711-96-5 C21H43N5O7
Isepamicine Isepamicine 58152-03-7 C22H43N5O12
Neomycin Neomycin 1404-04-2 C23H52N6O25S3
Viomycin sulfzte Viomycin sulfzte C25H45N13O14S
Nebramycin Nebramycin 11048-13-8
Lividomycin Lividomycin 36019-37-1 C29H55N5O19
MICRONOMICIN SULFATE MICRONOMICIN SULFATE 66803-19-8 C20H43N5O11S
KANAMYCIN KANAMYCIN 8063-07-8 C18H36N4O11
viomycin viomycin 32988-50-4 C25H43N13O10
Amikacin sulfate salt Amikacin sulfate salt 149022-22-0 C22H45N5O17S
FORTIMICIN FORTIMICIN 55779-06-1 C17H35N5O6
Bekanamycin Bekanamycin 4696-76-8 C18H37N5O10
ROSAMICIN ROSAMICIN 35834-26-5 C31H51NO9
KANAMYCIN MONOSULPHATE KANAMYCIN MONOSULPHATE C18H38N4O15S
NEOMYCIN B NEOMYCIN B 119-04-0 C23H46N6O13
Dibekacin sulfate Dibekacin sulfate 58580-55-5 C18H37N5O11S
DIHYDROSTREPTOMYCIN SESQUISULFATE SALT DIHYDROSTREPTOMYCIN SESQUISULFATE SALT 1425-61-2 C21H43N7O16S
Dihydrostreptomycin Dihydrostreptomycin 128-46-1 C21H41N7O12
  • 1
HomePage | Member Companies | Advertising | Contact us | Previous WebSite | MSDS | CAS Index | CAS DataBase
Copyright © 2016 ChemicalBook All rights reserved.