成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

Lidocain

Lidocaine Struktur
137-58-6
CAS-Nr.
137-58-6
Bezeichnung:
Lidocain
Englisch Name:
Lidocaine
Synonyma:
Xylocaine;Xyline;2-(Diethylamino)-N-(2,6-dimethylphenyl)-acetamide;Anestacon;Ligoncaine;Mesocain;Xylocain;Maricaine;Xilocaina;Alphacaine
CBNumber:
CB9128024
Summenformel:
C14H22N2O
Molgewicht:
234.34
MOL-Datei:
137-58-6.mol

Lidocain Eigenschaften

Schmelzpunkt:
66-69°C
Siedepunkt:
bp4 180-182°; bp2 159-160°
Dichte
0.9944 (rough estimate)
Brechungsindex
1.5110 (estimate)
Flammpunkt:
9℃
storage temp. 
Store at RT
L?slichkeit
ethanol: 4 mg/mL
pka
pKa 7.88(H2O)(Approximate)
Aggregatzustand
powder
Farbe
White to slightly yellow
Wasserl?slichkeit
practically insoluble
Merck 
14,5482
BCS Class
1
Stabilit?t:
Stable. Incompatible with strong oxidizing agents.
InChIKey
NNJVILVZKWQKPM-UHFFFAOYSA-N
LogP
2.440
CAS Datenbank
137-58-6(CAS DataBase Reference)
NIST chemische Informationen
Lidocaine(137-58-6)
EPA chemische Informationen
Acetamide, 2-(diethylamino)-N-(2,6-dimethylphenyl)- (137-58-6)
Sicherheit
  • Risiko- und Sicherheitserkl?rung
  • Gefahreninformationscode (GHS)
Kennzeichnung gef?hrlicher Xn,T,F
R-S?tze: 22-39/23/24/25-23/24/25-11
S-S?tze: 22-26-36-45-36/37-16-7
RIDADR  3249
WGK Germany  3
RTECS-Nr. AN7525000
HazardClass  6.1(b)
PackingGroup  III
HS Code  29242990
Giftige Stoffe Daten 137-58-6(Hazardous Substances Data)
Toxizit?t LD50 oral in rat: 317mg/kg
Bildanzeige (GHS) GHS hazard pictograms
Alarmwort Warnung
Gefahrenhinweise
Code Gefahrenhinweise Gefahrenklasse Abteilung Alarmwort Symbol P-Code
H302 Gesundheitssch?dlich bei Verschlucken. Akute Toxizit?t oral Kategorie 4 Warnung GHS hazard pictogramssrc="/GHS07.jpg" width="20" height="20" /> P264, P270, P301+P312, P330, P501
Sicherheit

Lidocain Chemische Eigenschaften,Einsatz,Produktion Methoden

R-S?tze Betriebsanweisung:

R22:Gesundheitssch?dlich beim Verschlucken.

S-S?tze Betriebsanweisung:

S22:Staub nicht einatmen.
S26:Bei Berührung mit den Augen sofort gründlich mit Wasser abspülen und Arzt konsultieren.
S36:DE: Bei der Arbeit geeignete Schutzkleidung tragen.

Chemische Eigenschaften

solid

Verwenden

Lidocaine (Alphacaine)is a selective inverse peripheral histamine H1-receptor agonist with an IC50 of >32 μM. [1] Histamine is responsible for many features of allergic reactions. Lidocaine (Alphacaine)is a second-generation antihistamine agent closely st

Definition

ChEBI: Lidocaine is the monocarboxylic acid amide resulting from the formal condensation of N,N-diethylglycine with 2,6-dimethylaniline. It has a role as a local anaesthetic, an anti-arrhythmia drug, an environmental contaminant, a xenobiotic and a drug allergen. It is a monocarboxylic acid amide, a tertiary amino compound and a member of benzenes. It derives from a glycinamide.

Indications

Experimentally, lidocaine has been found to prevent VF arising during myocardial ischemia or infarction by preventing the fragmentation of organized largewavefronts into heterogeneous wavelets. Although lidocaine is of proven benefit in preventing VF early after clinical myocardial infarction, there is no evidence that it reduces mortality. To the contrary, lidocaine may increase mortality after myocardial infarction by approximately 40% to 60%.There are no controlled studies of lidocaine in secondary prevention of recurrence of VT or VF.
Lidocaine terminates organized monomorphic spontaneous VT or induced sustained VT in only approximately 20% of cases and is less effective than many other antiarrhythmic drugs. In a blinded, randomized study of intravenous lidocaine versus intravenous amiodarone in out-of-hospital VF resistant to defibrillation, lidocaine was associated with half the likelihood of survival to hospital admission compared with amiodarone.

Allgemeine Beschreibung

Lidocaine was the first amino amide synthesized in 1948and has become the most widely used local anesthetic. Thetertiary amine has a pKa of 7.8 and it is formulated as thehydrochloride salt with a pH between 5.0 and 5.5. When lidocaineis formulated premixed with epinephrine the pH ofthe solution is adjusted to between 2.0 and 2.5 to prevent the hydrolysis of the epinephrine. Lidocaine is also availablewith or without preservatives. Some formulations of lidocainecontain a methylparaben preservative that maycause allergic reactions in PABA-sensitive individuals. Thelow pKa and medium water solubility provide intermediateduration of topical anesthesia of mucous membranes.Lidocaine can also be used for infiltration, peripheral nerveand plexus blockade, and epidural anesthesia.

Biologische Aktivit?t

Anasthetic and class Ib antiarrhythmic agent.? Blocks voltage-gated sodium channels in the inactivated state.

Kontakt-Allergie

Lidocaine is an anesthetic of the amide group, like articaine or bupivacaine. Immediate-type IgE-dependent reactions are rare, and delayed-type contact dermatitis is exceptional. Cross-reactivity between the different amide anesthetics is not systematic.

Pharmakologie

Lidocaine is the most widely used local anaesthetic. It has a rapid onset and short duration of action. Lidocaine is rapidly and extensively metabolised in the liver and is safe at recommended doses. Efficacy is enhanced markedly and duration of action prolonged by addition of adrenaline. Lidocaine is less toxic than bupivacaine; a testament to this relative safety is that lidocaine is used intravenously as a class 1b antiarrhythmic and as an i.v. infusion to treat refractory chronic pain. Lidocaine solutions for injection are available in concentrations of 1% and 2%, with or without adrenaline. It is also available as a spray (4% or 10%), cream (2% or 4%), ointment or medicated plaster (both 5%) for topical application.

Pharmakokinetik

Lidocaine is administered intravenously because extensive first-pass transformation by the liver prevents clinically effective plasma concentrations orally. The drug is dealkylated and eliminated almost entirely by the liver; therefore, dosage adjustments are necessary in the presence of hepatic disease or dysfunction. Lidocaine clearance exhibits the time dependency common to high-clearance agents. With a continuous infusion lasting more than 24 hours, there is a decrease in total lidocaine clearance and an increase in elimination half-life compared with a single dose. Lidocaine free plasma levels can vary in certain patients owing to binding with albumin and the acutephase reactant a1-acid glycoprotein. Levels of a1-acid glycoprotein are increased in patients after surgery or acute myocardial infarction, whereas levels of both a1-acid glycoprotein and serum albumin are decreased in chronic hepatic disease or heart failure and in those who are malnourished. This is an essential consideration because it is the unbound fraction that is pharmacologically active.

Clinical Use

The metabolism of lidocaine is typical of the amino amideanesthetics . The liver is responsiblefor most of the metabolism of lidocaine and any decreasein liver function will decrease metabolism. Lidocaineis primarily metabolized by de-ethylation of the tertiary nitrogento form monoethylglycinexylidide (MEGX). At lowlidocaine concentrations, CYP1A2 is the enzyme responsiblefor most MEGX formation. At high lidocaine concentrations,both CYP1A2 and CYP3A4 are responsible for the formationof MEGX.

Nebenwirkungen

Central nervous system side effects such as drowsiness, slurred speech, paresthesias, agitation, and confusion predominate. These symptoms may progress to convulsions and respiratory arrest with higher plasma concentrations. A rare adverse effect is malignant hyperthermia.
Cimetidine significantly reduces the systemic clearance of lidocaine as well as the volume of distribution at steady state and the degree of plasma protein binding. Beta blockers also reduce lidocaine clearance owing to a decrease in hepatic blood flow. For the same reason, clearance is reduced in congestive heart failure or low-output states.
Amiodarone may also influence the pharmacokinetics of lidocaine. In patients receiving amiodarone, single doses of intravenous lidocaine do not influence the pharmacokinetics of either agent. When amiodarone treatment is started in patients who are already receiving lidocaine infusion, there is a decrease in lidocaine clearance, which can result in toxic lidocaine levels.

Sicherheitsprofil

Poison by ingestion, intravenous, intraperitoneal, and subcutaneous routes. Human systemic effects: blood pressure lowering, changes in heart rate, coma, convulsions, dlstorted perceptions, dyspnea, excitement, hallucinations, muscle contraction or spasticity, pulse rate, respiratory depression, toxic psychosis. An experimental teratogen. Other experimental reproductive effects. A local anesthetic. Mutation data reported. When heated to decomposition it emits toxic fumes of NOx.

Synthese

Lidocaine, 2-(diethylamino)-N-(2,6-dimethylphenyl)acetamide (2.2.2), is synthesized from 2,6-dimethylaniline upon reaction with chloroacetic acid chloride, which gives |á-chloro-2,6-dimethylacetanilide (2.1.1), and its subsequent reaction with diethylamine [11].
Synthesis of Lidocaine, 137-58-6
Synthesis of Lidocaine

Elektrophysiologische Effekte

Experimentally, lidocaine has been found to prevent VF arising during myocardial ischemia or infarction by preventing the fragmentation of organized largewavefronts into heterogeneous wavelets. Although lidocaine is of proven benefit in preventing VF early after clinical myocardial infarction, there is no evidence that it reduces mortality. To the contrary, lidocaine may increase mortality after myocardial infarction by approximately 40% to 60%.There are no controlled studies of lidocaine in secondary prevention of recurrence of VT or VF.
Lidocaine terminates organized monomorphic spontaneous VT or induced sustained VT in only approximately 20% of cases and is less effective than many other antiarrhythmic drugs. In a blinded, randomized study of intravenous lidocaine versus intravenous amiodarone in out-of-hospital VF resistant to defibrillation, lidocaine was associated with half the likelihood of survival to hospital admission compared with amiodarone.

Arzneimittelwechselwirkung

The concurrent administration of lidocaine with cimetidine but not ranitidine may cause an increase (15%) in the plasma concentration of lidocaine. This effect is a manifestation of cimetidine reducing the clearance and volume of distribution of lidocaine. The myocardial depressant effect of lidocaine is enhanced by phenytoin administration.

Stoffwechsel

Lidocaine is extensively metabolized in the liver by N-dealkylation and aromatic hydroxylations catalyzed by CYP1A2 isozymes. Lidocaine also possesses a weak inhibitory activity toward the CYP1A2 isozymes and, therefore, may interfere with metabolism of other medications.

Vorsichtsma?nahmen

Contraindications include hypersensitivity to local anesthetics of the amide type (a very rare occurrence), severe hepatic dysfunction, a history of grand mal seizures due to lidocaine, and age 70 or older. Lidocaine is contraindicated in the presence of second- or thirddegree heart block, since it may increase the degree of block and can abolish the idioventricular pacemaker responsible for maintaining the cardiac rhythm.

Lidocain Upstream-Materialien And Downstream Produkte

Upstream-Materialien

Downstream Produkte


Lidocain Anbieter Lieferant Produzent Hersteller Vertrieb H?ndler.

Global( 612)Lieferanten
Firmenname Telefon E-Mail Land Produktkatalog Edge Rate
Wuhan Haorong Biotechnology Co.,ltd
+86-18565342920; +8618565342920
sales@chembj.net China 289 58
Hebei Mojin Biotechnology Co., Ltd
+86 13288715578 +8613288715578
sales@hbmojin.com China 12834 58
Guangzhou Tengyue Chemical Co., Ltd.
+86-86-18148706580 +8618826483838
evan@tyvovo.com China 148 58
Apeloa production Co.,Limited
+8619933239880
admin@apcl.com.cn China 852 58
Hebei Miaoyin Technology Co.,Ltd
+86-17367732028 +86-17367732028
kathy@hbyinsheng.com China 3512 58
Shaanxi Xianhe Biotech Co., Ltd
+8617709210191
Jerry@xhobio.com China 882 58
Hebei Mojin Biotechnology Co.,Ltd
+86-15028179902
angelia@hbmojin.com China 1176 58
Hubei Chuyunshun Biotechnology Co., Ltd.
+86-15926415536 +86-15926415536
hbcyssw@163.com China 160 58
Shaanxi Dideu Medichem Co. Ltd
+86-29-81148696 +86-15536356810
1022@dideu.com China 3882 58
Nanjing Deda New Material Technology Co., Ltd
+8613223293093
bella@njdeda.com China 80 58

137-58-6(Lidocain)Verwandte Suche:


  • 2-(Diethylamino)-2',6'-acetoxylidide
  • 2-(diethylamino)-2’,6’-acetoxylidide
  • 2-(diethylamino)-n-(2,6-dimethylphenyl)-acetamid
  • 2',6'-Acetoxylidide, 2-(diethylamino)-
  • 6’-acetoxylidide,2-(diethylamino)-2
  • Acetamide, 2-(diethylamino)-N-(2,6-dimethylphenyl)-
  • N-Di-ethylaminoacetyl-2,6-dimethylaniline
  • Lidocaine solution
  • omega-Diethylamino-2,6-dimethylacetanilide
  • Remicaine
  • Rucaina
  • Solarcaine aloe extra burn relief cream
  • Solcain
  • Xilina
  • Xllina
  • Xycaine
  • Xylestesin
  • Xylocitin
  • Xyloneural (free base)
  • Xylotox
  • BULK DRUGS. LIDOCAINE USP
  • Acetamide,2-(diethylamino)-N-(2,6-dimethylphenyl)-
  • a-Diethylamino-2,6-acetoxylidide
  • alfa-Dietilamino-2,6-dimetilacetanilide
  • alpha-(Diethylamino)-2,6-acetoxylidide
  • alpha-diethylamino-2,6-acetoxylidide
  • alpha-Diethylamino-2,6-dimethylacetanilide
  • alpha-Diethylaminoaceto-2,6-xylidide
  • Anbesol
  • Broncaine
  • Cappicaine
  • Cito optadren
  • component of Cracked heel relief cream
  • component of Emla cream
  • component of Neosporin plus
  • Cuivasil
  • Dalcaine
  • Diethylaminoacet-2,6-xylidide
  • Diethylaminoaceto-2,6-xylidide
  • Duncaine
  • Esracaine
  • Gravocain
  • Isicaina
  • Isicaine
  • L-Caine
  • Leostesin
  • Lida-Mantle
  • Lidocaine M
  • Lidothesin
  • LIDOCAINE-D6
  • LIDOCAINE BASE USP
  • 2-Diethylamino-2,6-acetoxylidid
  • 2-Diethylamino-N-(2,6-dimethylphenyl)acetamide, Lignocaine, Xylocaine
  • 2-diethylaminoacet-2,6-xylidide
  • lidocaine(xylocaine)
  • Lidocaine (base and/or unspecified salts)
  • Lidocaine USP Base
  • LidocaineMonohydrateUsp
Copyright 2019 ? ChemicalBook. All rights reserved