成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

ChemicalBook--->CAS DataBase List--->79-34-5

79-34-5

79-34-5 Structure

79-34-5 Structure
IdentificationMore
[Name]

1,1,2,2-Tetrachloroethane
[CAS]

79-34-5
[Synonyms]

1,1,2,2-TETRACHLOROETHANE
ACETYLENE TETRACHLORIDE
S-TETRACHLOROETHANE
SYM-TETRACHLOROETHANE
(CHCl2)2
1,1,2,2,-tetrachlor-ethane
1,1,2,2-Czterochloroetan
1,1,2,2-czterochloroetan(polish)
1,1,2,2-tce
1,1,2,2-Tetrachloorethaan
1,1,2,2-Tetrachloraethan
1,1,2,2-Tetrachlorethan
1,1,2,2-Tetrachlorethane
1,1,2,2-tetrachlorethane(french)
1,1,2,2-tetrachloro-ethan
1,1,2,2-Tetracloroetano
1,1,2,3-tetrachloroethane
1,1-Dichloro-2,2-dichloroethane
a13-04597
Acetosol
[EINECS(EC#)]

201-197-8
[Molecular Formula]

C2H2Cl4
[MDL Number]

MFCD00000848
[Molecular Weight]

167.85
[MOL File]

79-34-5.mol
Chemical PropertiesBack Directory
[Appearance]

Tetrachloroethane is a heavy, volatile colorless to light yellow liquid. It has a sweetish, chloroform-like odor. The Odor Threshold is 0.5 ppm in water and 1.5 ppm in air.
[Melting point ]

-43 °C
[Boiling point ]

147 °C(lit.)
[density ]

1.586 g/mL at 25 °C(lit.)
[vapor density ]

5.8 (vs air)
[vapor pressure ]

8 mm Hg ( 20 °C)
[refractive index ]

n20/D 1.494(lit.)
[Fp ]

142-146°C
[storage temp. ]

Refrigerator
[solubility ]

2830g/l
[form ]

Liquid
[color ]

slightly green-yellow
[Stability:]

Stable. Incompatible with strong oxidizing agents, strong bases. Reacts violently with sodium, potassium, nitrates, 2,4-dinitrophenyl disulphide.
[Water Solubility ]

0.3 g/100 mL (25 ºC)
[Merck ]

14,9189
[BRN ]

969206
[Henry's Law Constant]

6.22 at 30 °C (headspace-GC, Sanz et al., 1997)
[Dielectric constant]

8.4199999999999999
[Exposure limits]

Potential occupational carcinogen. NIOSH REL: TWA 1 ppm (7 mg/m3), IDLH 100 ppm; OSHA PEL: TWA 5 ppm (35 mg/m3); ACGIH TLV: TWA 1 ppm (adopted).
[CAS DataBase Reference]

79-34-5(CAS DataBase Reference)
[IARC]

2B (Vol. 20, Sup 7, 71, 106) 2014
[NIST Chemistry Reference]

Ethane, 1,1,2,2-tetrachloro-(79-34-5)
[EPA Substance Registry System]

1,1,2,2-Tetrachloroethane (79-34-5)
Safety DataBack Directory
[Hazard Codes ]

T+,N,T,F
[Risk Statements ]

R26/27:Very Toxic by inhalation and in contact with skin .
R51/53:Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment .
R59:Dangerous for the ozone layer.
R39/23/24/25:Toxic: danger of very serious irreversible effects through inhalation, in contact with skin and if swallowed .
R23/24/25:Toxic by inhalation, in contact with skin and if swallowed .
R11:Highly Flammable.
[Safety Statements ]

S38:In case of insufficient ventilation, wear suitable respiratory equipment .
S45:In case of accident or if you feel unwell, seek medical advice immediately (show label where possible) .
S61:Avoid release to the environment. Refer to special instructions safety data sheet .
S36/37:Wear suitable protective clothing and gloves .
[OEB]

B
[OEL]

TWA: 1 ppm (7 mg/m3) [skin] (Chloroethanes)
[RIDADR ]

UN 1702 6.1/PG 2
[WGK Germany ]

3
[RTECS ]

KI8575000
[TSCA ]

Yes
[HazardClass ]

6.1
[PackingGroup ]

II
[HS Code ]

29031990
[Safety Profile]

Suspected carcinogen with experimental carcinogenic and tumorigenic data. Poison by inhalation, ingestion, and intraperitoneal routes. Moderately toxic by several other routes. Mutation data reported. Human central nervous system effects by ingestion and inhalation: general anesthesia, somnolence, hallucinations, and distorted perceptions. Considered the most toxic of the common chlorinated hydrocarbons. Considered to be a very severe industrial hazard and its use has been restricted or even forbidden in certain countries. It is not an inert solvent. Reacts violently with N2O4,2,4dinitrophenyl disulfide, and on contact with sodium or potassium. When heated in contact with solid potassium hydroxide, spontaneously flammable chloroor dichloroacetylene gas is evolved. Any water can cause appreciable hydrolysis, even at room temperature, and both hydrolysis and oxidation become comparatively rapid above 110'. When heated to decomposition it emits toxic fumes of Cl-. A strong irritant of eyes and mucous membranes. A concentration of 3 ppm produces a detectable odor, thus an initial produces a detectable odor, thus an initial warning effect. Its narcotic action is stronger than that of chloroform, but, because of its low volatility, narcosis is less severe and much less common in industrial poisoning than in the case of other chlorinated hydrocarbons. The toxic action of this material is chiefly on the liver, where it produces acute yellow atrophy and cirrhosis. Fatty degeneration of the kidneys and heart, hemorrhage into the lungs and serous membranes, and edema of the brain have also been found in fatal cases. Some reports indicate a toxic action on the central nervous system with changes in the brain and in the peripheral nerves. The effect on the blood is one of hemolysis with appearance of young cells in the circulation and a monocptosis. Due to its solvent action on the natural skin oils, dermatitis is not uncommon. The initial symptoms resulting from exposure to the vapor are lachrymation, salivation, and irritation of the nose and throat. Continued exposure to high concentrations results in restlessness, dizziness, nausea, vomiting, and narcosis. The latter, however, is rare in industry. More commonly, exposure is less severe and most complaints are vague and related to the digestive and nervous systems. The patient's symptoms gradually progress to a more serious illness with development of toxic jaundice, liver tenderness, etc., and possibly albuminuria and edema. With serious liver damage, the jaundice increases and toxic symptoms appear, with somnolence, delirium, convulsions, and coma usually precedmg death. See also ACETYLENE COMPOUNDS and CHLORIDES.
[Hazardous Substances Data]

79-34-5(Hazardous Substances Data)
[Toxicity]

LD50 orally in rats: 0.20 ml/kg (Smyth)
[IDLA]

100 ppm
Raw materials And Preparation ProductsBack Directory
[Raw materials]

Ferric chloride-->ANTIMONY(V) CHLORIDE
[Preparation Products]

Chloroacetic acid-->Trichloroethylene-->Thiophosgene-->Hexachloroethane-->4-Vinylbenzyl chloride-->Decabromodiphenyl oxide-->PENTACHLOROETHANE-->Dichloroacetyl chloride-->1,1,1,2-TETRACHLOROETHANE-->1,1,2-Trichloroethane-->2-chloro-1-(8-hydroxyquinolin-5-yl)ethanone-->2-(2,4-Difluorobenzoyl)benzoic acid
Hazard InformationBack Directory
[General Description]

Colorless to pale yellow liquid with a sweet odor. Sinks in water.
[Reactivity Profile]

1,1,2,2-TETRACHLOROETHANE(79-34-5) may be incompatible with strong oxidizing and reducing agents. Also may be incompatible with many amines, nitrides, azo/diazo compounds, alkali metals, and epoxides. Decomposed by heat and UV light, forming phosgene and HCl; reacts violently with finely dispersed metals [Handling Chemicals Safely 1980. p. 886].
[Air & Water Reactions]

Insoluble in water.
[Health Hazard]

Compound is a powerful narcotic and liver poison; may also cause changes in blood composition and neurological disturbances. Repeated exposure by inhalation can be fatal. Ingestion causes vomiting, diarrhea, severe mucosal injury, liver necrosis, cyanosis, unconsciousness, loss of reflexes, and death. Contact with eyes causes irritation and lachrymation. Can be absorbed through the skin and may produce severe skin lesions.
[Potential Exposure]

Tetrachloroethane is used as an intermediate in the trichloroethylene production from acetylene and as a solvent; as a dry cleaning agent; as a fumigant; in cement; and in lacquers. It is used in the manufacture of artificial silk, artificial leather, and artificial pearls. Recently, its use as a solvent has declined due to replacement by less toxic compounds. It is also used in the estimation of water content in tobacco and many drugs, and as a solvent for chromium chloride impregnation of furs.
[Fire Hazard]

Special Hazards of Combustion Products: Irritating hydrogen chloride vapor may form in fire.
[First aid]

If this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, get medical attention. Give large quantities of water and induce vomiting. Do not make an unconscious person vomit.
[Shipping]

UN1702 Tetrachloroethane or 1,1,2,2Tetrachloroe thane, Hazard Class: 6.1; Labels: 6.1Poisonous materials.
[Incompatibilities]

Violent reaction with chemically active metals; strong caustics; strong acids; especially fuming sulfuric acid. Degrades slowly when exposed to air. Attacks plastic and rubber.
[Chemical Properties]

colourless to light yellow liquid with a chloroform-like
[Chemical Properties]

Tetrachloroethane is a heavy, volatile colorless to light yellow liquid. It has a sweetish, chloroform-like odor. The Odor Threshold is 0.5 ppm in water and 1.5 ppm in air.
[Waste Disposal]

Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal. Incineration, preferably after mixing with another combustible fuel. Care must be exercised to assure complete combustion to prevent the formation of phosgene. An acid scrubber is necessary to remove the halo acids produced.
[Physical properties]

Colorless to pale yellow liquid with a sweet, chloroform-like odor. A detection odor threshold concentration of 50 mg/m3 (7.3 ppmv) was experimentally determined by Dravnieks (1974).
[Uses]

1,1,2,2-Tetrachloroethane, once used as a solvent for cleaning and extraction processes, is still used to some extent as a chemical intermediate. Present usage is quite limited because less toxic solvents are available.
[Uses]

Intermediate in the production of trichloroethylene, tetrachloroethylene, and 1,2-dichloroethylene; previously used as a solvent, insecticide and fumigant.
[Uses]

Nonflammable solvent for fats, oils, waxes, resins, cellulose acetate, rubber, copal, phosphorus, sulfur. As solvent in certain types of Friedel-Crafts reactions or phthalic anhydride condensations. In the manufacture of paint, varnish, and rust removers. In soil sterilization and weed killer and insecticide formulations. In the determination of theobromine in cacao. As immersion fluid in crystallography. In the biological laboratory to produce pathological changes in gastrointestinal tract, liver, and kidneys. Intermediate in the manufacture of trichloroethylene and other chlorinated hydrocarbons having two carbon atoms.
[Definition]

ChEBI: A member of the class of chloroethanes that is ethane substituted by chloro groups at positions 1, 1, 2 and 2.
[Hazard]

Toxic by ingestion, inhalation, skin absorption. Questionable carcinogen.
[Carcinogenicity]

The EPA has classified this material as “l(fā)ikely to be carcinogenic to humans” based on data from an oral cancer bioassay in male and female Osborne–Mendel rats and B6C3F1 mice. In mice, a significant increase in the incidence of hepatoceullar carcinomas in both genders was observed. Male Osborne–Mendel rats showed increased incidence of hepatocellular carcinomas, which is a rare tumor in this strain.
The National Cancer Institute has included 1,1,2,2- tetrachloroethane in their bioassay series using rats and mice. Their summary states that the time-weighted average doses (by gavage) were 108 and 62 mg/kg/day for male rats, 76 and 43 mg/kg/day for female rats, and 282 and 142 mg/kg/day for all mice. There was a highly significant positive dose-related trend in the incidence of hepatocellular carcinoma in mice of both sexes. No statistically significant incidence of neoplastic lesions was observed in male or female rats. However, two hepatocellular carcinomas and one neoplastic nodule, which are rare tumors in the male Osborne–Mendel rat, were observed in high-dose males. Under the conditions of this bioassay, orally administered 1,1,2,2-tetrachloroethane was a liver carcinogen in B6C3Fl mice of both sexes.
The proposed metabolic pathway involves the production of dichloroacetic acid, which was identified as the major urinary metabolite in treated mice. Other pathways involve formation of trichloroethylene via dehydrochlorination or tetrachloroethylene via oxidation. Free radicals may also be formed.
From the NCI study, a oral slope factor (OSF) of 0.2 per mg/kg/day was developed by the EPA. No inhalation unit risk (IUR) was determined by the EPA because of absence of data from inhalation exposure.
[Environmental Fate]

Biological. Monodechlorination by microbes under laboratory conditions produced 1,1,2- trichloroethane (Smith and Dragun, 1984). In a static-culture-flask screening test, 1,1,2,2- tetrachloroethane (5 and 10 mg/L) was statically incubated in the dark at 25 °C with yeast extract and settled domestic wastewater inoculum. No significant degradation was observed after 28 d of incubation (Tabak et al., 1981).
Chemical/Physical. In an aqueous solution containing 0.100 M phosphate-buffered distilled water, 1,1,2,2-tetrachloroethane was abiotically transformed to 1,1,2-trichloroethane. This reaction was investigated within a temperature range of 30 to 95 °C at various pHs (5 to 9) (Cooper et al., 1987). Abiotic dehydrohalogenation of 1,1,2,2-tetrachloroethane yielded trichloroethylene (Vogel et al., 1987) and HCl (Kollig, 1993). The half-life for this reaction at 20 °C was reported to be 0.8 yr (Vogel et al., 1987). Under alkaline conditions, 1,1,2,2-tetrachloroethane dehydrohalogenated to trichloroethylene. The reported hydrolysis half-life of 1,1,2,2-tetrachloroethane in water at 25 °C and pH 7 is 146 d (Jeffers et al., 1989).
The evaporation half-life of 1,1,2,2-tetrachloroethane (1 mg/L) from water at 25 °C using a shallow-pitch propeller stirrer at 200 rpm at an average depth of 6.5 cm was 55.2 min (Dilling, 1977).
At influent concentrations of 1.0, 0.1, 0.01, and 0.001 mg/L, the GAC adsorption capacities were 11, 4.5, 1.9, and 0.8 mg/g, respectively (Dobbs and Cohen, 1980).
[Purification Methods]

Stir the ethane, on a steam-bath, with conc H2SO4 until a fresh portion of acid remains colourless. The organic phase is then separated, distilled in steam, dried (CaCl2 or K2CO3), and fractionally distilled in a vacuum. [Beilstein 1 IV 144.]
[Toxicity evaluation]

Metabolism of tetrachloroethane to reactive products plays a key role in its toxicity. Both nuclear and microsomal cytochrome P450 enzymes have been implicated in the metabolism of the compound, possibly releasing aldehydes, alkenes, acids, and free radicals that may react with biological tissues. Therefore, because of high metabolic activity of the liver, the formation of active metabolites is a likely mechanism for the toxicity tetrachloroethane. Hence, tetrachloroethane metabolism could result in the reductive formation of radical products, leading to the stimulation of lipid peroxidation resulting in hepatotoxic effects, as noted in carbon tetrachloride, a structurally related chlorinated alkane. Both dichloroacetic and trichloroacetic acids are known to cause proliferation of peroxisomes.
The mechanism of neurological toxicity of tetrachloroethane has not been well characterized. Studies of similar compounds suggest that the parent compound itself may be the causative agent. This property allows interference with neural membrane function, bringing about central nervous system depression, behavioral changes, and anesthesia.
The mechanisms by which tetrachloroethane produces carcinogenic effects are incompletely characterized. Tetrachloroethane has been shown to bind to DNA in the liver and several other organs in rats and mice, which may contribute to the carcinogenic process. Studies indicate that there may be initiating and promoting activities when tetrachloroethane is metabolized, possibly by cytochrome P450 enzymes producing urinary metabolites such as dichloroacetic acid, trichloroacetic acid, trichloroethylene, and tetrachloroethylene. Studies of chronic exposure of rats and mice to these specific metabolites revealed hepatic tumors in male and female mice. Although it is possible that the carcinogenicity of tetrachloroethane involves metabolism with these compounds, there is no direct evidence linking one or more metabolites to its carcinogenic effects. Tetrachloroethane may be metabolized to form free radicals, which can in turn covalently bind to tissues, including DNA.
[Toxics Screening Level]

The Initial Risk Screening Level (IRSL) for 1,1,2,2-tetrachloroethane is 0.02 μg/m3 based on an annual averaging time.
Material Safety Data Sheet(MSDS)Back Directory
[msds information]

1,1,2,2-tetrachloroethane(79-34-5).msds
Questions And AnswerBack Directory
[Description]

1,1,2,2-Tetrachloroethane is the chlorinated form of ethane and it illustrates a relatively high solvent potential when compared to all chlorinated hydrocarbons. Currently, the use of 1,1,2,2-Tetrachloroethane in the USA is restricted since air emissions of the compound originate from its application as a chemical catalyst in the synthesis of specific chemicals. The detection of low quantities of the compound in the air can have negative effects on the neurological system. Short-term/Acute inhalation exposure to concentrated 1,1,2,2-Tetrachloroethane can also have negative effects on the gastrointestinal system, the central nervous system, the respiratory system and the liver in humans. Prolonged exposure to 1,1,2,2-Tetrachloroethane through inhalation can result in an enlarged liver, drowsiness, numbness, dizziness, tremors, headaches and jaundice in humans.
[Chemical and Physical Properties]

1,1,2,2-Tetrachloroethane is a colourless, light yellow liquid with a characteristic odour which resembles that of chloroform. It has a molecular weight of 167.838 g/mol, a monoisotopic mass of 165.891 g/mol and an exact mass of 167.888 g/mol.
1,1,2,2-Tetrachloroethane has a heavy atom count of 6, a complexity of 6 and a topographical surface area of 0 A^2. It attains its boiling point at 146.0 deg C/295° F at 760 mm Hg. It has a melting point of -330 F/-42.3℃.
It dissolves in water at a rate of 2,830 mg/L at 25℃. 1 gram of the compound dissolves in 350 ml of water at 25℃. 1,1,2,2-Tetrachloroethane is soluble in acetone and it is miscible with ethanol, ether, dimethylformamide, oils, carbon disulfide, chloroform, carbon tetrachloride, petroleum ether, benzene and methanol.
1,1,2,2-Tetrachloroethane has a density of 1.595 at 68° F/1.5953 g/cu cm at 20℃. It has a relative density of 1.59, where water = 1 at 770 F. It also has a vapour density of 5.79 (Air=1) and a vapour pressure of 5 mm Hg at 70° F; 6 mm Hg at 77° F/5.74 mm Hg at 25℃.
1,1,2,2-Tetrachloroethane is stable in the absence of light, moisture and air even when exposed to high temperatures. However, heat may contribute to the compounds instability.
When the compound is exposed to air, it evolves gradually into trichloroethylene and small quantities of phosgene. The exposure of 1,1,2,2-Tetrachloroethane to moisture results in its decomposition which results in the formation of hydrochloric acid.
In the presence of ultraviolet radiation, the compound decomposes to produce 2,2-dichloroacetyl chloride. When 1,1,2,2-Tetrachloroethane comes into contact with hot metal surfaces, incandescent material or a flame, it decomposes with the evolution of carbon monoxide, carbon dioxide and hydrochloric acid.
1,1,2,2-Tetrachloroethane is a corrosive liquid which can attack certain forms of coatings, rubber or plastics.
[Applications]

The synthesis of 1,1,2,2-tetrachloroethane in the United States has decreased in recent years. Previously, the compound synthesized as a by-product for the manufacture of large volumes of 1,2,-dichloroethylene tetrachloroethylene, and trichloroethylene. 1,1,2,2-tetrachloroethane was also used in pesticide, as an extractant for fats and oils, in photographic films, lacquers and varnishes, in paint removers, in degreasing and cleaning metals, and as a solvent.
[Methods of Preparation]

1,1,2,2-tetrachloroethane is synthesized by the addition of chlorine as a catalyst to acetylene; by chlorination of 1,2-dichloroethane; by catalytic chlorination of ethane; by direct oxychlorination/chlorination of ethylene. 1,1,2,2-tetrachloroethane is not isolated from the reaction in most cases but it is readily cracked at 454℃ to produce tetrachloroethylene and trichloroethylene products. To obtain a high purity compound, 1,1,2,2tetrachloroethane can be obtained by chlorinating acetylene.
Commercial processes for the synthesis of the compound can be classified into two main routes, where chlorine is added to acetylene and the liquid-phase which entails the chlorination of 1,2-dichloroethane or ethylene. The liquid-state chlorination of 1,1,2-trichloroethane or vinyl chloride with the catalytic action of AlCl3 results in a highly selective 1,1,2,2-tetrachloroethane.
[Hazard Statements]

1,1,2,2-tetrachloroethane is toxic if swallowed and it may result in acute toxicity/irritation/corrosion upon contact with the skin. It can cause significant eye damage and it can also result in acute toxicity/fatality upon inhalation. 1,1,2,2-tetrachloroethane causes dizziness/drowsiness and it is associated with specific organ toxicity based and narcotic effects. Based on single or prolonged exposure, the compound could result in target organ damage.
1,1,2,2-tetrachloroethane is a powerful narcotic but it can result in liver poisoning, which may also be accompanied by neurological disturbances and modifications in the composition of blood. Prolonged exposure to the compound through inhalation can be fatal. Ingestion of the compound results in loss of reflexes, unconsciousness, cyanosis, liver necrosis, severe mucosal injury, diarrhoea, vomiting and death. Contact with the eyes also results in lachrymation and irritation. It can be absorbed through dermal routes hence it may also induce the development of lesions.
Special hazards in regards to exposure of the compound to fire suggest that it may produce irritating/toxic hydrogen chloride vapours.
Spectrum DetailBack Directory
[Spectrum Detail]

1,1,2,2-Tetrachloroethane(79-34-5)MS
1,1,2,2-Tetrachloroethane(79-34-5)1HNMR
1,1,2,2-Tetrachloroethane(79-34-5)13CNMR
1,1,2,2-Tetrachloroethane(79-34-5)IR1
1,1,2,2-Tetrachloroethane(79-34-5)IR2
1,1,2,2-Tetrachloroethane(79-34-5)Raman
Well-known Reagent Company Product InformationBack Directory
[Acros Organics]

1,1,2,2-Tetrachloroethane, 98.50%(79-34-5)
[Alfa Aesar]

1,1,2,2-Tetrachloroethane, 98+%(79-34-5)
[Sigma Aldrich]

79-34-5(sigmaaldrich)
[TCI AMERICA]

1,1,2,2-Tetrachloroethane,>97.0%(GC)(79-34-5)
79-34-5 suppliers list
Company Name: Hebei Weibang Biotechnology Co., Ltd
Tel: +8615531157085 , +8615531157085
Website: www.weibangbio.com/
Company Name: Hebei Mujin Biotechnology Co.,Ltd
Tel: +86 13288715578 +8613288715578 , +8613288715578
Website: http://www.mojinchemical.com
Company Name: Henan Fengda Chemical Co., Ltd
Tel: +86-371-86557731 +86-13613820652 , +86-13613820652
Website: http://www.fdachem.com
Company Name: Henan Tianfu Chemical Co.,Ltd.
Tel: +86-0371-55170693 +86-19937530512 , +86-19937530512
Website: https://www.tianfuchem.com/
Company Name: Hefei TNJ Chemical Industry Co.,Ltd.
Tel: +86-0551-65418679 +8618949832763 , +8618949832763
Website: www.tnjchem.com
Company Name: career henan chemical co
Tel: +86-0371-86658258 +8613203830695 , +8613203830695
Website: www.coreychem.com/
Company Name: Hubei Jusheng Technology Co.,Ltd.
Tel: 18871490254
Website: www.hubeijusheng.com
Company Name: Xiamen AmoyChem Co., Ltd
Tel: +86-86-5926051114 +8618959220845 , +8618959220845
Website: www.amoychem.com/
Company Name: Hubei xin bonus chemical co. LTD
Tel: 86-13657291602
Website: m.is0513.com/ShowSupplierProductsList1549548/0.htm
Company Name: Shanghai Longyu Biotechnology Co., Ltd.
Tel: +8619521488211 , +8619521488211
Website: m.is0513.com/manufacturer/shanghai-longyu-biotechnology-164/
Company Name: Chongqing Chemdad Co., Ltd
Tel: +86-023-6139-8061 +86-86-13650506873 , +86-86-13650506873
Website: http://www.chemdad.com/
Company Name: CONIER CHEM AND PHARMA LIMITED
Tel: +8618523575427 , +8618523575427
Website: http://www.conier.com/
Company Name: SIMAGCHEM CORP
Tel: +86-13806087780 , +86-13806087780
Website: http://www.simagchem.com/
Company Name: Hefei TNJ Chemical Industry Co.,Ltd.
Tel: +86-0551-65418671 +8618949823763 , +8618949823763
Website: www.tnjchem.com
Company Name: Shanghai UCHEM Inc.
Tel: +862156762820 +86-13564624040 , +86-13564624040
Website: http://www.myuchem.com/
Company Name: ANHUI WITOP BIOTECH CO., LTD
Tel: +8615255079626 , +8615255079626
Website: m.is0513.com/showsupplierproductslist418627/0_en.htm
Company Name: Shaanxi Dideu Medichem Co. Ltd
Tel: +86-029-89586680 +86-18192503167 , +86-18192503167
Website: www.dideu.com
Company Name: AFINE CHEMICALS LIMITED
Tel: +86-0571-85134551
Website: www.afinechem.com/index.html
Tags:79-34-5 Related Product Information
75-00-3 630-20-6 594-89-8 76-12-0 33685-54-0 336-50-5 375-34-8 67-72-1 630-25-1 76-01-7 75-68-3 79-34-5