成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

ChemicalBook--->CAS DataBase List--->11056-06-7

11056-06-7

11056-06-7 Structure

11056-06-7 Structure
IdentificationBack Directory
[Name]

Bleomycin
[CAS]

11056-06-7
[Synonyms]

BLM
BLEO
BLEXANE
Bleocin
BLENOXANE
bleomicin
Bleomycin
Bleocinbase
DNA helicase
Bleo Bleocin
RecQ-like type 2
BLEOMYCIN SULPHATE
RecQ protein-like 3
Bleomycin (usan 8ci9ci)
BleoMycin sulphate(Mycin series)
Bleomycin (base and/or unspecified salts)
BLEOMYCIN SULFATE, STREPTOMYCES VERTICILLUS
Anti-Bloom Syndrome, N-Terminal antibody produced in rabbit
N1-(3-(dimethylsulfonio)propyl)bleomycinamide) (Bleomycin A2)
4-(2,4-Dichloro-5-methoxyphenylamino)-6-methoxy-7-(3-(4-methylpiperazin-1-yl)propoxy)quinoline-3-carbonitrile
3-[[2-[2-[2-[2-[4-[2-[6-Amino-2-[1-(2-amino-2-carbamoyl-ethyl)amino-2-carbamoyl-ethyl]-5-methyl-pyrimidin-4-yl]carbonylamino-3-[3-[4-carbamoyloxy-3,5-dihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]o
3-[[2-[2-[2-[[2-[[4-[[2-[[6-Amino-2-[3-amino-1-[(2,3-Diamino-3-oxopropyl)amino]-3-oxopropyl]-5-methylpyrimidine-4-carbonyl]amino]-3-[(2R,3S,4S,5S,6S)-3-[(2R,3S,4S,5R,6R)-4-carbamoyloxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-(3H-imidazol-4-yl)propanoyl]amino]-3-hydroxy-2-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]ethyl]-1,3-thiazol-4-yl]1,3-thiazole-4-carbonyl]amino]propyl-dimethylsulfanium hydrogen sulfate
3-[[2-[2-[2-[[(2S,3R)-2-[[(2S,3S,4R)-4-[[(2S)-2-[[6-Amino-2-[(1S)-3-amino-1-[[(2S)-2,3-diamino-3-oxopropyl]amino]-3-oxopropyl]-5-methylpyrimidine-4-carbonyl]amino]-3-[(2R,3S,4S,5S,6S)-3-[(2R,3S,4S,5R,6R)-4-carbamoyloxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-(3H-imidazol-4-yl)propanoyl]amino]-3-hydroxy-2-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]ethyl]-1,3-thiazol-4-yl]1,3-thiazole-4-carbonyl]amino]propyl-dimethylsulfanium
[EINECS(EC#)]

232-925-2
[Molecular Formula]

C110H168N34O46S7
[MDL Number]

MFCD00070310
[MOL File]

11056-06-7.mol
[Molecular Weight]

2927.17
Chemical PropertiesBack Directory
[Definition]

A species of bleomycin noted for its adverse pulmonary effects in humans. It is a complex of related glycopeptide antibiotics from Streptomyces verticillus consisting of bleomycin A2 and B2.
[Appearance]

colourless or light yellow powder
[storage temp. ]

2-8°C
[solubility ]

H2O: 20 mg/mL
[form ]

powder
[color ]

white
[IARC]

2B (Vol. 26, Sup 7) 1987, 1 (Vol. 76, 100A) 2012
[EPA Substance Registry System]

Bleomycin(11056-06-7)
Hazard InformationBack Directory
[Chemical Properties]

colourless or light yellow powder
[General Description]

Colorless or yellowish powder. Possible bluish color depending on copper content.
[Air & Water Reactions]

Water soluble
[Fire Hazard]

Flash point data for Bleomycin are not available. Bleomycin is probably nonflammable.
[Hazard]

Possible carcinogen.
[Description]

Bleomycin is a complex of no less than 16 glycopeptide antibiotics made from the family Streptomyces verticilus, which have different R groups. Bleomycines exhibit antitumor, antiviral, and antibacterial activity. When bound to DNA, they disturb the spiraling of both single and double strands of DNA. To a lesser degree, they inhibit RNA and protein synthesis. It is administered both intravenously and intramuscularly.
[Originator]

Bleomycin Hydrochloride,Nippon Kayaku, Co.,Japan
[Uses]

Antineoplastic for solid tumors.
[Uses]

Bleomycin sulfate USP (Blenoxane)is used to traet squamous cell carcinoma of head, neck, esophagus, skin, GU tract; testicular tumor; Hodgkin’s lymphomas.
[Uses]

It is used for lymphomas, carcinomas, and sarcomas.
[Indications]

The bleomycins are a group of glycopeptides that are isolated from Streptomyces verticillus. The clinical preparation, bleomycin sulfate (Blenoxane), is a mixture of several components. Bleomycin binds to DNA, in part through an intercalation mechanism, without markedly altering the secondary structure of the nucleic acid. The drug produces both single- and double-strand scission and fragmentation of DNA. It is thought that the bleomycins, which are avid metal-chelating agents, form a bleomycin–Fe ++ complex that can donate electrons to molecular oxygen, thus forming the superoxide and hydroxyl free radicals. It is these highly reactive intermediates that attack DNA and produce DNA strand breakage and maximum cytotoxicity in the late G2 and early M-phases of the cell cycle.
[Manufacturing Process]

To a medium having a composition of 6.4 % of millet jelly, 0.5 % of glucose, 3.5 % of soybean powder, 0.75 % of corn steep liquor, 0.3 % of sodium chloride, 0.1 % of potassium secondary phosphate, 0.05 % of zinc sulfate, 0.01 % of copper sulfate, 0.2 % of sodium nitrate and 0.01 % of Toho No. 1 (trade name for a surface active agent composed of polyoxyethylene manufactured by Toho Chemical Industry Co. Ltd., Japan) was added 3-aminopropyl- dimethylsulfonium bromide hydrobromate in a proportion of 0.4 mg/ml to adjust the pH of the medium to 6.5.
Each 100 ml of the thus treated medium was separately charged into a Sakaguchi flask and was then sterilized. Subsequently, Streptomyces verticillus (ATCC No. 15003) was inoculated in the medium and was cultured at 27°C for 8 days with stirring at 130 r.p.m. Thereafter, the culture liquors (4.5 L) were collected and filtered to obtain 3.0 L of a filtrate (potency 38.8 mg/ml, total potency 416.4 mg). This culture filtrate was passed through and adsorbed on a column packed with 200 ml of Amberlite IRC-50 and was washed with water and was eluted with 0.5 N hydrochloric acid. 1.0 L of the eluate was neutralized, was passed through and adsorbed on a column packed with 100 ml of active carbon, was washed and was then eluted by use of a 1:1 (by volume) mixture of acetone - 0.02 N aqueous hydrochloric acid solution, and fractions active to Mycobacterium 607 were collected and concentrated to dryness. The resulting residue was dissolved in 5 ml of an 80 % aqueous methanol solution and was charged into a column packed with 30 ml of neutral alumina, followed by elution with an 80 % aqueous methanol solution. Subsequently, bleomycin-containing fractions were collected and concentrated to dryness to obtain 195 mg of bleomycin hydrochloride (potency 650.7 mcg/mg, total potency 172 mg). The yield from the culture filtrate was 30.5 %.
[Brand name]

Blenoxane (Bristol-Myers Squibb).
[Therapeutic Function]

Antibiotic
[Pharmaceutical Applications]

The drug Bleomycin (BLM) is successfully used as an anticancer agent, and is known to cause fragmentation of the DNA. The drug is used for the treatment of testicular cancer, non-Hodgkin’s lymphoma, Hodgkin’s lymphoma and cancers of the head and neck area (Cancer research UK). The name Bleomycin describes a family of water-soluble antibiotics that can be isolated from the bacterium Streptomyces verticillus. All family members contain the same core structure, a sulfur-containing polypeptide chain, and are only differentiated by a small side group and the sugar moiety.
BLM was discovered 1966 by Umezawa et al. when they screened the filtrate of S. verticillus for cytotoxic activity. The therapeutically active forms of BLM are BLM A2 and B2, which differ only in the side chain. BLM is believed to exhibit its anticancer activity by DNA degradation, a process that is dependent on the presence of molecular oxygen, and the binding of a metal to BLM to form the so-called ‘a(chǎn)ctivated BLM complex’.
The structure of BLM consists of several biologically important units, each contributing to its anticancer activity. Two structural units of importance to highlight are the metal-binding site and the DNA-binding site. It is believed that the intercalation of DNA by BLM occurs via the C-terminus, which contains two thiazole rings and the positively charged sulfonium salt. The positive charges of the sulfur atom can interact with the negatively charged phosphate backbones of the DNA. The metal-binding site can be found at the N-terminus and contains deprotonated amide and histidine groups. The metal is coordinated in a square planar complex, where a primary amine group occupies the axial position. It can coordinate to a variety of metals such as Cu2+, Co2+, Zn2+ and Fe2+, but it shows the highest binding affinity to Fe2+. The metal chelation and subsequent activation of molecular oxygen is crucial to the antiproliferative activity of BLM. The carbohydrate core seems to be less involved in the direct anticancer activity. Nevertheless, it has been suggested that it regulates the cellular uptake and indirectly regulates the anticancer activity.
[Mechanism of action]

Bleomycin is poorly absorbed orally, but it can be given by various parenteral routes. Its plasma half-life is not affected by renal dysfunction as long as creatinine clearance is greater than 35 mL/minute. Bleomycin hydrolase, which inactivates bleomycin, is an enzyme that is abundant in liver and kidney but virtually absent in lungs and skin; the latter two organs are the major targets of bleomycin toxicity. It is thought that bleomycin-induced dermal and pulmonary toxicities are related to the persistence of relatively high local concentrations of active drug.
[Clinical Use]

Bleomycin, in combination with cisplatin or etoposide, is important as part of the potentially curative combination chemotherapy of advanced testicular carcinomas. Bleomycin is used in some standard regimens for the treatment of Hodgkin’s and non-Hodgkin’s lymphomas, and it is useful against squamous cell carcinomas of the head and neck, cervix, and skin.
[Side effects]

A potentially fatal lung toxicity occurs in 10 to 20% of patients receiving bleomycin. Patients particularly at risk are those who are over 70 years of age and have had radiation therapy to the chest. Rarely, bleomycin also may cause allergic pneumonitis. Bleomycin skin toxicity is manifested by hyperpigmentation, erythematosus rashes, and thickening of the skin over the dorsum of the hands and at dermal pressure points, such as the elbows. Many patients develop a low-grade transient fever within 24 hours of receiving bleomycin. Less common adverse effects include mucositis, alopecia, headache, nausea, and arteritis of the distal extremities.
[Drug interactions]

Potentially hazardous interactions with other drugs
Antipsychotics: avoid clozapine, increased risk of agranulocytosis.
Cytotoxics: increased pulmonary toxicity with cisplatin and brentuximab, avoid with brentuximab; in combination with vinca alkaloids can lead to Raynaud’s syndrome and peripheral ischaemia.
Live vaccines: avoid concomitant use.
[Metabolism]

The mechanism for bio-transformation is not yet fully known. Inactivation takes place during enzymatic breakdown by bleomycin hydrolase, primarily in plasma, liver and other organs and, to a much lesser degree, in skin and lungs. About 60-70% of the administered drug is excreted unchanged in the urine, probably by glomerular filtration. Approximately 50% is recovered in the urine in the 24 hours following an IV or IM injection. The rate of excretion, therefore, is highly influenced by renal function; concentrations in plasma are greatly elevated if usual doses are given to patients with renal impairment with only up to 20% excreted in 24 hours.
Safety DataBack Directory
[Hazard Codes ]

T
[Risk Statements ]

46-40
[Safety Statements ]

53-36/37-45
[WGK Germany ]

3
[RTECS ]

EC5991990
[F ]

10
[Hazardous Substances Data]

11056-06-7(Hazardous Substances Data)
Material Safety Data Sheet(MSDS)Back Directory
[msds information]

Bleomycin(11056-06-7).msds
11056-06-7 suppliers list
Company Name: Hangzhou ICH Biofarm Co., Ltd
Tel: +86-0571-28186870; +undefined8613073685410 , +undefined8613073685410
Website: http://www.ichemie.com/
Company Name: career henan chemical co
Tel: +86-0371-86658258 +8613203830695 , +8613203830695
Website: www.coreychem.com/
Company Name: Chongqing Chemdad Co., Ltd
Tel: +86-023-6139-8061 +86-86-13650506873 , +86-86-13650506873
Website: http://www.chemdad.com/
Company Name: CONIER CHEM AND PHARMA LIMITED
Tel: +8618523575427 , +8618523575427
Website: http://www.conier.com/
Company Name: Creative Enzymes
Tel: 1-516-855-7709
Website: https://www.creative-enzymes.com/
Company Name: Hefei TNJ Chemical Industry Co.,Ltd.
Tel: +86-0551-65418671 +8618949823763 , +8618949823763
Website: www.tnjchem.com
Company Name: Wuhan Fortuna Chemical Co., Ltd
Tel: +86-027-59207850
Website: www.fortunachem.com/
Company Name: Baoji Guokang Healthchem co.,ltd
Tel: +8615604608665 15604608665 , 15604608665
Website: www.gk-bio.com
Company Name: Alfa Chemistry
Tel:
Website: www.alfa-chemistry.com/
Company Name: LEAP CHEM CO., LTD.
Tel: +86-852-30606658
Website: www.leapchem.com
Company Name: Henan Fengda Chemical Co., Ltd
Tel: +86-371-86557731 +86-13613820652 , +86-13613820652
Website: http://www.fdachem.com
Company Name: SHANGHAI KEAN TECHNOLOGY CO., LTD.
Tel: +8613817748580 , +8613817748580
Website: www.kean-chem.com
Company Name: Aspen Biopharma Labs Pvt Ltd  
Tel: +91-9248058660 +91-9248058662
Website: www.aspenbiopharmalabs.com
Company Name: Adamas Reagent, Ltd.  
Tel: 400-6009262 16621234537
Website: http://www.tansoole.com
Company Name: LGM Pharma  
Tel: 1-(800)-881-8210
Website: www.lgmpharma.com
Company Name: Sichuan Kulinan Technology Co., Ltd  
Tel: 400-1166-196 18981987031
Website: http://www.hx-r.com/
Company Name: BOC Sciences  
Tel: 1-631-485-4226; 16314854226
Website: https://www.bocsci.com
Company Name: Chengdu Ai Keda Chemical Technology Co., Ltd.  
Tel: 4008-755-333 18080918076
Website: http://www.aikeshiji.com
Tags:11056-06-7 Related Product Information
77-86-1 60-32-2 56-40-6 2999-46-4 14542-93-9 39687-95-1 645-96-5 36635-61-7 9041-93-4 7188-38-7 2769-64-4