成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

ChemicalBook >> journal list >> Drugs >>article
Drugs

Drugs

IF: 13
Download PDF

Lopinavir/ritonavir: a review of its use in the management of HIV infection.

Published:1 January 2003 DOI: 10.2165/00003495-200363080-00004 PMID: 12662125
Risto S Cvetkovic, Karen L Goa

Abstract

Lopinavir is a novel protease inhibitor (PI) developed from ritonavir. Coadministration with low-dose ritonavir significantly improves the pharmacokinetic properties and hence the activity of lopinavir against HIV-1 protease. Coformulated lopinavir/ritonavir was developed for ease of administration and to ensure both drugs are taken together, as part of combination therapy with other antiretroviral agents. Coformulated lopinavir/ritonavir-based regimens provide adequate and durable suppression of viral load and sustained improvements in CD4+ cell counts, as demonstrated in randomised trials in antiretroviral therapy-naive and -experienced adults and children. To date, development of primary resistance to lopinavir/ritonavir has not been observed in 470 antiretroviral therapy-naive patients treated for >48 weeks. The lopinavir/ritonavir-based regimen was more effective than nelfinavir in antiretroviral therapy-naive HIV-1-infected patients in a phase III trial. The coformulation is also effective as 'salvage' therapy, as shown by low cross-resistance rates in patients who failed to respond to treatment with other PIs in phase II trials. Coformulated lopinavir/ritonavir was well tolerated in both antiretroviral therapy-naive and -experienced HIV-1-infected adults and children with low rates of study drug-related treatment discontinuations. The most common adverse event in adults associated with lopinavir/ritonavir was diarrhoea, followed by other gastrointestinal disturbances, asthenia, headache and skin rash. The incidence of moderate-to-severe adverse events in children was low, skin rash being the most common. Changes in body fat composition occurred with equal frequency in lopinavir/ritonavir- and nelfinavir-treated naive patients, through week 60 in a phase III study. Although laboratory abnormalities occurred with similar frequency in both treatment groups, triglycerides grade 3/4 elevations were significantly more frequent with lopinavir/ritonavir. Total cholesterol and triglycerides grade 3/4 elevations appear to occur more frequently in PI-experienced than in PI-naive lopinavir/ritonavir-treated patients. A number of clinically important drug interactions have been reported with lopinavir/ritonavir necessitating dosage adjustments of lopinavir/ritonavir and/or the interacting drugs, and several other drugs are contraindicated in patients receiving the coformulation.

Conclusion: Coformulated lopinavir/ritonavir is a novel PI that, in combination with other antiretroviral agents, suppresses plasma viral load and enhances immunological status in therapy-naive and -experienced patients with HIV-1 infection. Lopinavir/ritonavir appears more effective than nelfinavir in 'naive' patients and is also suitable for 'salvage' therapy, because of its high barrier to development of resistance. Given its clinical efficacy, a tolerability profile in keeping with this class of drugs, favourable resistance profile and easy-to-adhere-to administration regimen, coformulated lopinavir/ritonavir should be regarded as a first-line option when including a PI in the management of HIV-1 infection.

Overview of pharmacodynamic properties: Lopinavir/ritonavir is a coformulation of two structurally related protease inhibitor (PI) antiretroviral agents. Lopinavir is a highly potent and selective inhibitor of the HIV type 1 (HIV-1) protease, an essential enzyme for production of mature, infective virus. It acts by arresting maturation of HIV-1 thereby blocking its infectivity. Thus, the main antiviral action of lopinavir is to prevent subsequent infections of susceptible cells; it has no effect on cells with already integrated viral DNA. Lopinavir has an approximate, equals 10-fold higher in vitro activity against both wild-type and mutant HIV-1 proteases than ritonavir; however, its in vivo activity is greatly attenuated by a high first-pass hepatic metabolism. The low-dose ritonavir coadministered with lopinavir inhibits metabolic inactivation of lopinavir and acts only as its pharmacokinetic enhancer. Therefore, the antiretroviral activity of roviral activity of coformulated lopinavir/ritonavir 400/100mg twice daily is derived solely from lopinavir plasma concentrations. Combining lopinavir with low-dose ritonavir produces lopinavir concentrations far exceeding those needed to suppress 50% of in vitro and in vivo viral replication in CD4+ cells and monocyte/macrophages (main human reservoirs of HIV-1 infection). Thus far, no resistance to lopinavir has been detected in clinical trials in antiretroviral therapy-naive patients treated for up to 204 weeks and only 12% of HIV-1 strains from patients in whom prior treatment with multiple PIs have failed, have been observed to develop resistance to coformulated lopinavir/ritonavir. A strong negative correlation was found between the number of PI mutations at baseline and the viral response rates achieved with lopinavir/ritonavir-based regimens in PI-experienced patients, indicating that resistance to lopinavir increases with increasing number of PI mutations and that five PI mutations represent the clinically relevant genotypic breakpoint for lopinavir.

Overview of pharmacokinetic properties: The absolute bioavailability of lopinavir coformulated with ritonavir in humans has not yet been established. Multiple-dosage absorption pharmacokinetics of lopinavir/ritonavir 400/100mg twice daily (the mean peak [C(max)] and trough [C(trough)] plasma concentrations at steady-state and the 12-hour area under the plasma concentration-time curve [AUC(12)] of either drug) were stable in antiretroviral therapy-naive and single PI-experienced adult patients receiving therapy over a 24-week evaluation period. The C(trough) values of lopinavir, achieved with lopinavir/ritonavir 400/100mg twice daily, were median 84-fold higher than the protein binding-adjusted 50% effective concentration (EC(50)) of lopinavir against wild-type HIV-1 in antiretroviral therapy-naive HIV-1-infected patients in a phase II study. Bioavailability of lopinavir administered in either the capsule or the liquid lopinavir/ritonavir formulation can be increased substantially with concurrent ingestion of food with moderate-to-high fat content. At steady state, lopinavir is approximately 98-99% plasma protein bound and the percentage of its unbound (i.e. pharmacologically active) fraction is dependent on total drug plasma concentration. Both lopinavir and ritonavir penetrate poorly into the human genital tracts and the cerebrospinal fluid. Both agents undergo extensive and rapid first-pass metabolism by hepatic cytochrome P450 (CYP) 3A4 isoenzyme. However, ritonavir also potently inhibits this enzyme and acts as a pharmacokinetic enhancer of lopinavir. The elimination half-life and apparent oral clearance of lopinavir average approximately 4-6 hours and approximately 6-7 L/h, respectively, with lopinavir/ritonavir 400/100mg twice daily administration. Less than 3% and 20% of the lopinavir dose is excreted unchanged in the urine and faeces, respectively. Limited data show similar pharmacokinetics of lopinavir in children as in adults.

Drug interactions: Coformulated lopinavir/ritonavir has the potential to interact with wide variety of drugs via several mechanisms, mostly involving the CYP enzymes. Coadministration of lopinavir/ritonavir is contraindicated with certain drugs (i.e. flecainide, propafenone, astemizole, terfenadine, ergot derivatives, cisapride, pimozide, midazolam and triazolam) that are highly dependent on CYP3A or CYP2D6 for clearance and for which elevated plasma concentrations are associated with serious and/or life-threatening events. Coadministration with lopinavir/ritonavir is also not recommended for drugs or herbal products (i.e. rifampicin [rifampin] and St. John's wort [Hypericum perforatum]) that may substantially reduce lopinavir plasma concentrations, or drugs whose plasma concentrations elevated by the coformulation may lead to serious adverse reactions (i.e. simvastatin and lovastatin). However, a recent study in healthy volunteers suggests that adequate lopinavir concentrations may be achieved during rifampicin coadministration by increasing the twice-daily dosage of lopinavir/ritonavir in conjunction with therapeutic drug monitoring. The liquid (but not the capsule) formulation of lopinavir/ritonavir contains 42.4% ethanol (v/v) and should not be coadministered with drugs capable of producing disulfiram-like reactions (e.g. disulfiram, metronidazole). Coadministration with saquinavir or indinavir requires no dosage adjustment, whereas coadministration with amprenavir, nevirapine or efavirenz requires a dosage increase of the coformulation typically by 33%. As the oral bioavailability of both didanosine and lopinavir/ritonavir is significantly affected by concurrent food ingestion, didanosine should be administered 1 hour before or 2 hours after lopinavir/ritonavir has been taken with food. Interactions between lopinavir/ritonavir and other nucleoside reverse transcriptase inhibitors (NRTIs) are not expected. The coformulation is also likely to increase plasma concentrations of non-antiretroviral drugs metabolised through the CYP3A pathway. To reduce the risk of their toxicity when coadministered with lopinavir/ritonavir, the recommended actions include: (i) monitoring of the drug plasma concentration (antiarrhythmics and immunosuppressants) or the international normalised ratio (warfarin); (ii) the use of alternative treatment (atorvastatin) or birth control methods (ethinylestradiol); and (iii) dosage adjustment (clarithromycin [only in patients with renal failure], rifabutin, dihydropyridine calcium-channel blockers, atorvastatin, ketoconazole and itraconazole). (ABSTRACT TRUNCATED)

Substances (14)

Related products
Procduct Name CAS Molecular Formula Supplier Price
Ketoconazole 65277-42-1 C26H28Cl2N4O4 1016 suppliers $7.00-$1674.75
Itraconazole 84625-61-6 C35H38Cl2N8O4 825 suppliers $6.00-$1504.50
Ethanol 64-17-5 C2H6O 806 suppliers $10.00-$17310.00
Clarithromycin 81103-11-9 C38H69NO13 790 suppliers $5.00-$3300.00
Simvastatin 79902-63-9 C25H38O5 744 suppliers $5.00-$4900.00
Ritonavir 155213-67-5 C37H48N6O5S2 648 suppliers $5.00-$1290.00
Rifampicin 13292-46-1 C43H58N4O12 632 suppliers $15.00-$2020.00
Lovastatin 75330-75-5 C24H36O5 592 suppliers $20.00-$1208.70
Lopinavir 192725-17-0 C37H48N4O5 373 suppliers $11.72-$2590.00
Dideoxyinosine 69655-05-6 C10H12N4O3 342 suppliers $5.00-$2440.00

Similar articles

IF:96.2

A preliminary study of ritonavir, an inhibitor of HIV-1 protease, to treat HIV-1 infection.

New England Journal of Medicine M Markowitz, M Saag,etc Published: 7 December 1995
IF:13

Dutasteride: a review of its use in the management of prostate disorders.

Drugs Susan J Keam, Lesley J Scott,etc Published: 1 January 2008
IF:4.6

Cabergoline: a review of its use in the inhibition of lactation for women living with HIV

Journal of the International AIDS Society Karen J Tulloch, Philippe Dodin,etc Published: 11 June 2019