"HCT 116人結(jié)腸癌細(xì)胞代次低|培養(yǎng)基|送STR圖譜
傳代比例:1:2-1:4(首次傳代建議1:2)
生長(zhǎng)特性:貼壁生長(zhǎng)
細(xì)胞系的選擇需要考慮到細(xì)胞系的功能特點(diǎn)、生長(zhǎng)速率、鋪板效率、生長(zhǎng)條件和生長(zhǎng)特征、克隆效率、培養(yǎng)方式等因素,如果您想高產(chǎn)量表達(dá)重組蛋白,您可以選擇可以懸浮生長(zhǎng)的快速生長(zhǎng)細(xì)胞系。細(xì)胞培養(yǎng)的操作步驟主要包括傳代、換液、凍存和復(fù)蘇。這些步驟確保了細(xì)胞能夠在實(shí)驗(yàn)室環(huán)境中長(zhǎng)期存活并繼續(xù)增殖。傳代是將細(xì)胞從一個(gè)容器轉(zhuǎn)移到另一個(gè)容器的過(guò)程,以擴(kuò)大細(xì)胞數(shù)量;換液是為了清除代謝廢物并補(bǔ)充新鮮培養(yǎng)基;凍存則是為了長(zhǎng)期保存細(xì)胞,而復(fù)蘇則是重新激活冷凍保存的細(xì)胞使其恢復(fù)正常生長(zhǎng)。
換液周期:每周2-3次
Jurkat (clone E6-1) Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁或懸浮,詳見(jiàn)產(chǎn)品說(shuō)明書(shū)部分;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:SW756細(xì)胞、CEM-CCRF (CAMR)細(xì)胞、MOLT-16細(xì)胞
Stanford University-Diffuse Histiocytic Lymphoma-10 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:懸浮;形態(tài)特性:淋巴母細(xì)胞;相關(guān)產(chǎn)品有:NHEK細(xì)胞、T-HEECs細(xì)胞、SV40-MES13細(xì)胞
EnCa1 Cells;背景說(shuō)明:內(nèi)膜腺癌;女性;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:K7M2-WT細(xì)胞、CHL-11細(xì)胞、NCI-H2023細(xì)胞
HCT 116人結(jié)腸癌細(xì)胞代次低|培養(yǎng)基|送STR圖譜
背景信息:是一種人結(jié)腸癌細(xì)胞系,是由M·Brattain等人于1979年從患結(jié)腸癌的男性病人中分離的三株惡性細(xì)胞中的一株。HCT 116細(xì)胞在半固體瓊脂糖培養(yǎng)基中形成克隆;HCT 116細(xì)胞在無(wú)胸腺裸鼠有致瘤性,形成腫瘤結(jié)節(jié)。
┈訂┈購(gòu)(技術(shù)服務(wù))┈熱┈線:1┈3┈6┈4┈1┈9┈3┈0┈7┈9┈1【微信同號(hào)】┈Q┈Q:3┈1┈8┈0┈8┈0┈7┈3┈2┈4;
DSMZ菌株保藏中心成立于1969年,是德國(guó)的國(guó)家菌種保藏中心。該中心一直致力于細(xì)菌、真菌、質(zhì)粒、抗菌素、人體和動(dòng)物細(xì)胞、植物病毒等的分類(lèi)、鑒定和保藏工作。DSMZ菌種保藏中心是歐洲規(guī)模最大的生物資源中心,保藏有動(dòng)物細(xì)胞500多株。Riken BRC成立于1920年,是英國(guó)的國(guó)家菌種保藏中心。該中心一直致力于細(xì)菌、真菌、植物病毒等的分類(lèi)、鑒定和保藏工作。日本Riken BRC(Riken生物資源保藏中心)是全球三大典型培養(yǎng)物收集中心之一。Riken保藏中心提供了很多細(xì)胞系。在世界范圍內(nèi),這些細(xì)胞系,都在醫(yī)學(xué)、科學(xué)和獸醫(yī)中具有重要意義。Riken生物資源中心支持了各種學(xué)術(shù)、健康、食品和獸醫(yī)機(jī)構(gòu)的研究工作,并在世界各地不同組織的微生物實(shí)驗(yàn)室和研究機(jī)構(gòu)中使用。
產(chǎn)品包裝:復(fù)蘇發(fā)貨:T25培養(yǎng)瓶(一瓶)或凍存發(fā)貨:1ml凍存管(兩支)
來(lái)源說(shuō)明:細(xì)胞主要來(lái)源ATCC、ECACC、DSMZ、RIKEN等細(xì)胞庫(kù)
HCT 116人結(jié)腸癌細(xì)胞代次低|培養(yǎng)基|送STR圖譜
物種來(lái)源:人源、鼠源等其它物種來(lái)源
SNU-5 Cells;背景說(shuō)明:該細(xì)胞來(lái)源于一名低分化胃癌患者的轉(zhuǎn)移性腹水,1987年分離建立。該細(xì)胞表達(dá)CEA和TAG-72。;傳代方法:2-3天補(bǔ)液一次。;生長(zhǎng)特性:多細(xì)胞聚集、懸浮生長(zhǎng);形態(tài)特性:上皮細(xì)胞樣;相關(guān)產(chǎn)品有:SKLU01細(xì)胞、HCT_116細(xì)胞、KYSE-50細(xì)胞
MC 3T3-E1 Cells;背景說(shuō)明:該細(xì)胞有多個(gè)亞克隆,可以作為體外研究成骨細(xì)胞分化的良好模型,尤其是ECM信號(hào)通路的作用。;傳代方法:1:2傳代;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:成纖維細(xì)胞樣;相關(guān)產(chǎn)品有:SUNE1細(xì)胞、WBF344細(xì)胞、OE19細(xì)胞
PC-9/S1 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2傳代;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:上皮樣;相關(guān)產(chǎn)品有:SU86-86細(xì)胞、H-498細(xì)胞、D407細(xì)胞
SKG3A Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:2x10^4 cells/ml;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:上皮細(xì)胞樣;相關(guān)產(chǎn)品有:IOSE29細(xì)胞、B-3細(xì)胞、SW-48細(xì)胞
┈訂┈購(gòu)(技術(shù)服務(wù))┈熱┈線:1┈3┈6┈4┈1┈9┈3┈0┈7┈9┈1【微信同號(hào)】┈Q┈Q:3┈1┈8┈0┈8┈0┈7┈3┈2┈4;
形態(tài)特性:上皮細(xì)胞樣
正確的細(xì)胞復(fù)蘇需知事項(xiàng):細(xì)胞凍存HAO了,接下來(lái)要注意什么問(wèn)題呢?沒(méi)錯(cuò),就是記得到時(shí)間了,拿出來(lái)復(fù)蘇。那么,細(xì)胞復(fù)蘇的過(guò)程中又有哪些該注意的事項(xiàng)呢?細(xì)胞活力和形態(tài)檢查的作用何在?活力檢查——千萬(wàn)不要使用不健康的細(xì)胞,可能有污染(真菌、支原體等),如果發(fā)現(xiàn)有污染毫不猶豫的丟棄!形態(tài)檢查——檢查細(xì)胞的固有形態(tài)和生長(zhǎng)行為。凍存細(xì)胞:補(bǔ)充新的培養(yǎng)——在您開(kāi)始凍存細(xì)胞的前一天補(bǔ)充新的培養(yǎng)。在細(xì)胞長(zhǎng)至70%單層時(shí)收獲細(xì)胞,計(jì)數(shù)活細(xì)胞數(shù),用凍存調(diào)整細(xì)胞密度~5 x106 s/ml (根據(jù)不同的細(xì)胞類(lèi)型調(diào)整);凍存——用凍存洗細(xì)胞并用凍存重懸細(xì)胞,有不同類(lèi)型的凍存,根據(jù)細(xì)胞類(lèi)型選擇Zui合適的凍存(常用的凍存成分有):5-10% DMSO——注意確保DMSO不含有其他的毒性物質(zhì);5-15%甘油;如果細(xì)胞在無(wú)血清培養(yǎng)基內(nèi)生長(zhǎng),應(yīng)在50%條件培養(yǎng)基內(nèi)(細(xì)胞在無(wú)血清培養(yǎng)基內(nèi)生長(zhǎng)24小時(shí))內(nèi)凍存和復(fù)蘇。在凍存管上標(biāo)記HAO細(xì)胞類(lèi)型,日期,凍存人等信息,并保證每?jī)龃婀懿怀^(guò)1.5ml。放入罐之前記錄凍存管的數(shù)量和位置。以Zui快的速度轉(zhuǎn)移凍存管知罐內(nèi),因此,此步驟ZuiHAO使用干冰,或者把凍存管浸入裝有的小盒內(nèi)。此外還要注意,在凍存管上沒(méi)有足夠的空間記錄細(xì)胞的詳細(xì)信息,做HAO記錄是非常非常重要的!還有一個(gè)Zui重要的,一定要在異地的罐內(nèi)保存同樣的一份細(xì)胞,以免其中的一個(gè)罐出現(xiàn)問(wèn)題!細(xì)胞正確的復(fù)蘇方式和正確的凍存方式同樣重要,熟記以下要點(diǎn):當(dāng)從罐內(nèi)取出細(xì)胞時(shí),有可能會(huì)出現(xiàn)凍存管破裂的情況,使用保護(hù)面罩和防護(hù)服十分必要;其實(shí),細(xì)胞復(fù)蘇只是一個(gè)簡(jiǎn)單的實(shí)驗(yàn),不過(guò)這其中卻不可避免有一些需要注意的細(xì)節(jié),不然,也不一定會(huì)盡如人意。例如說(shuō),人身健康方面:一定要記得做HAO防凍工作,戴上護(hù)目鏡;盡量降低DMSO對(duì)細(xì)胞的損傷等等。
OVCAR 5 Cells;背景說(shuō)明:卵巢癌;腹水轉(zhuǎn)移;女性;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:Nb-2細(xì)胞、MTC-TT細(xì)胞、SW527細(xì)胞
SCC 15 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:4-1:8?jìng)鞔?3天換液1次。;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:VeroC1008細(xì)胞、NCI-H522細(xì)胞、MV4-11細(xì)胞
Hs611T Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2傳代;每周換液2-3次。;生長(zhǎng)特性:混合型;形態(tài)特性:淋巴母細(xì)胞樣;相關(guān)產(chǎn)品有:B16-F0細(xì)胞、MFD-1細(xì)胞、NCIH1385細(xì)胞
Strain V Cells;背景說(shuō)明:肺;自發(fā)永生;雄性;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:NeHepLxHT細(xì)胞、Stanford University-Diffuse Histiocytic Lymphoma-4細(xì)胞、SUDHL6細(xì)胞
GT38 Cells;背景說(shuō)明:胃癌;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:TOG細(xì)胞、CoCL3細(xì)胞、Mv 1 Lu細(xì)胞
SUM190 Cells;背景說(shuō)明:乳腺癌;女性;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:SW 780細(xì)胞、JURKAT E-61細(xì)胞、SCC15細(xì)胞
8226/S Cells;背景說(shuō)明:來(lái)源于一位61歲的男性漿細(xì)胞瘤患者;可產(chǎn)生免疫球蛋白輕鏈,未檢測(cè)到重鏈。;傳代方法:按1:2傳代,5-6小時(shí)可以看到細(xì)胞分裂;生長(zhǎng)特性:懸浮生長(zhǎng);形態(tài)特性:淋巴母細(xì)胞樣;相關(guān)產(chǎn)品有:LCD細(xì)胞、HCC-4006細(xì)胞、293細(xì)胞
GM346 Cells;背景說(shuō)明:皮下結(jié)締組織;自發(fā)永生;雄性;C3H/An;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:LN 229細(xì)胞、HS-766-T細(xì)胞、NCI-H2286細(xì)胞
SK-MEL-28 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:3-1:8?jìng)鞔?3天換液1次。;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:星形的;相關(guān)產(chǎn)品有:HSF細(xì)胞、AQ-Mel細(xì)胞、4-1st細(xì)胞
PGBE1 Cells;背景說(shuō)明:肺巨細(xì)胞癌;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:Simpson細(xì)胞、Clone 15 HL-60細(xì)胞、C6661細(xì)胞
Mo 59J Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:6-1:8?jìng)鞔?;每周換液2-3次。;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:成纖維細(xì)胞;相關(guān)產(chǎn)品有:GA-10 clone 4細(xì)胞、HuTu 80細(xì)胞、Ca759細(xì)胞
SKNBE(2c) Cells;背景說(shuō)明:神經(jīng)母細(xì)胞瘤;骨髓轉(zhuǎn)移;男性;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:Melan-a細(xì)胞、HCA 7細(xì)胞、NCI-H522細(xì)胞
ChaGo-K-1 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:4-1:8?jìng)鞔?;每周換液2次。;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:上皮細(xì)胞;相關(guān)產(chǎn)品有:Michigan Cancer Foundation-7細(xì)胞、LS123細(xì)胞、CAKI1細(xì)胞
TE-32 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2-1:4傳代,3-4天換液1次。;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:梭型和大的多核細(xì)胞;相關(guān)產(chǎn)品有:P3-Jiyoye細(xì)胞、hTERT-RPE細(xì)胞、EVSAT細(xì)胞
HEK-293-F Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2傳代;生長(zhǎng)特性:貼壁生長(zhǎng);懸浮生長(zhǎng);形態(tài)特性:上皮細(xì)胞樣;相關(guān)產(chǎn)品有:201T細(xì)胞、NCI-H1048細(xì)胞、STO細(xì)胞
TC-1[JHU-1] Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2傳代;生長(zhǎng)特性:貼壁生長(zhǎng) ;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:OCI/AML5細(xì)胞、BEL/FU細(xì)胞、MLA 144細(xì)胞
7404 Cells;背景說(shuō)明:用Northernblot方法,未能檢測(cè)到細(xì)胞中1.3kbLFIRE-1/HFREP-1mRNA的表達(dá)。;傳代方法:消化3-5分鐘。1:2。3天內(nèi)可長(zhǎng)滿。;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:上皮細(xì)胞樣;相關(guān)產(chǎn)品有:4-1st細(xì)胞、Hs 706.T細(xì)胞、Hs 821.T細(xì)胞
786-O PBRM1 KO 3 Cells(提供STR鑒定圖譜)
Abcam MCF-7 EIF2AK3 KO Cells(提供STR鑒定圖譜)
AT181TO Cells(提供STR鑒定圖譜)
BayGenomics ES cell line RRN227 Cells(提供STR鑒定圖譜)
BayGenomics ES cell line YHA296 Cells(提供STR鑒定圖譜)
CC22 Cells(提供STR鑒定圖譜)
DA00940 Cells(提供STR鑒定圖譜)
F4/B8 Cells(提供STR鑒定圖譜)
GM07553 Cells(提供STR鑒定圖譜)
HCT15 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁或懸浮,詳見(jiàn)產(chǎn)品說(shuō)明書(shū)部分;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:P-3J細(xì)胞、HuT 102細(xì)胞、OVCAR 8細(xì)胞
HCT 116人結(jié)腸癌細(xì)胞代次低|培養(yǎng)基|送STR圖譜
NRK52E Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2傳代;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:上皮細(xì)胞樣;相關(guān)產(chǎn)品有:HCC-1500細(xì)胞、SK-MEL-2細(xì)胞、SKNEP1細(xì)胞
OVCAR3 Cells;背景說(shuō)明:該細(xì)胞1982年由T.C. Hamilton等建系,源自一位60卵巢腺癌的腹水,是卵巢癌抗藥性研究的模型。;傳代方法:1:2—1:4傳代,每周換液2—3次;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:上皮細(xì)胞樣;相關(guān)產(chǎn)品有:BLO-11細(xì)胞、SNB.19細(xì)胞、NCI-H711細(xì)胞
SW954 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:3-1:6傳代,2-3天換液1次。;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:上皮細(xì)胞;相關(guān)產(chǎn)品有:KNS81細(xì)胞、MIA-Pa-Ca-2細(xì)胞、HCC15細(xì)胞
LO2 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁或懸浮,詳見(jiàn)產(chǎn)品說(shuō)明書(shū)部分;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:IOSE 29細(xì)胞、NR 8383細(xì)胞、Hs 695T細(xì)胞
Hs 840.T Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:4—1:8?jìng)鞔?,每周換液2—3次;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:成纖維細(xì)胞;相關(guān)產(chǎn)品有:SUIT-2細(xì)胞、HCC-2279細(xì)胞、Human Liver-7702細(xì)胞
B10R Cells(提供STR鑒定圖譜)
SNB-19 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2傳代;生長(zhǎng)特性:貼壁生長(zhǎng) ;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:LP1細(xì)胞、CCD18細(xì)胞、SKOV3細(xì)胞
TPC1 Cells;背景說(shuō)明:甲狀腺乳頭狀癌;女性;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:TE-4細(xì)胞、Mono Mac 1細(xì)胞、U-373MG細(xì)胞
RCF Cells;背景說(shuō)明:心?。怀衫w維 Cells;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:HA細(xì)胞、Malme-3 M細(xì)胞、MRASMC細(xì)胞
AN-3 Cells;背景說(shuō)明:AN3CA細(xì)胞建系于1964年。它衍生于子宮內(nèi)膜癌患者淋巴結(jié)轉(zhuǎn)移組織,具有癌細(xì)胞的基本特性,能在體外長(zhǎng)期傳代培養(yǎng),接種實(shí)驗(yàn)動(dòng)物產(chǎn)生明顯腫瘤。但細(xì)胞的生物學(xué)特性及超微結(jié)構(gòu)尚未深入研究,僅發(fā)現(xiàn)該細(xì)胞系促黑激素合成為陰性。細(xì)胞常用于人子宮內(nèi)膜癌細(xì)胞生物學(xué)及其相關(guān)特性研究。;傳代方法:1:2傳代;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:上皮樣;相關(guān)產(chǎn)品有:U373MG細(xì)胞、COLO 320細(xì)胞、HCM細(xì)胞
K299 Cells;背景說(shuō)明:間變性大細(xì)胞淋巴瘤;男性;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:懸浮;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:CL34細(xì)胞、H-2347細(xì)胞、NK-92細(xì)胞
CCD 841 CoTr Cells;背景說(shuō)明:結(jié)腸癌;SV40轉(zhuǎn)化;女性;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:COLO-320HSR細(xì)胞、CHP212細(xì)胞、C3H-10T1/2細(xì)胞
AU-565 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:4—1:6傳代;每3-5天換一次液。;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:上皮細(xì)胞;相關(guān)產(chǎn)品有:LCLC-103H細(xì)胞、Clone 166細(xì)胞、Panc04.03細(xì)胞
T47D Cells;背景說(shuō)明:浸潤(rùn)性導(dǎo)管癌;胸腔積液轉(zhuǎn)移;女性;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:AR-42J細(xì)胞、Hs895T細(xì)胞、Hs888T細(xì)胞
GM28877 Cells(提供STR鑒定圖譜)
HAP1 PEX3 (-) 1 Cells(提供STR鑒定圖譜)
JM-Jurkat Cells;背景說(shuō)明:該細(xì)胞源自一位14歲患有T淋巴細(xì)胞白血病男性的外周血;傳代方法:保持細(xì)胞密度在3—9×105cells/ml之間,1:5—1:10傳代,每周換液2—3次;生長(zhǎng)特性:懸浮生長(zhǎng);形態(tài)特性:圓形,單個(gè)或呈片;相關(guān)產(chǎn)品有:PFSK-1細(xì)胞、TE85細(xì)胞、Hs274T細(xì)胞
P3HR-1 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:每2-3天換液;生長(zhǎng)特性:懸浮生長(zhǎng) ;形態(tài)特性:淋巴母細(xì)胞樣;相關(guān)產(chǎn)品有:CA-OV-3細(xì)胞、REC 1細(xì)胞、KMS11細(xì)胞
MDAMB468 Cells;背景說(shuō)明:該細(xì)胞是1977年由CailleauR等從一位患有轉(zhuǎn)移性乳腺癌的51歲黑人女性的胸腔積液中分離得到的。雖然供體組織的G6PD等位基因雜合,但此細(xì)胞株始終表現(xiàn)為G6PDA表型。P53基因273位密碼子存在G→A突變,從而導(dǎo)致Arg→His替代。每個(gè)細(xì)胞上存在1×106個(gè)EGF受體。;傳代方法:1:2-1:4傳代;2-3天換液1次;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:上皮樣;相關(guān)產(chǎn)品有:HT1080細(xì)胞、BC-023細(xì)胞、IM9細(xì)胞
KYSE0030 Cells;背景說(shuō)明:來(lái)源于一位64歲,患有高分化的中段食管鱗癌的男性患者。;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:上皮細(xì)胞樣;相關(guān)產(chǎn)品有:hOMF細(xì)胞、P31/Fujioka細(xì)胞、Human Epithelioma-2細(xì)胞
Hs 683 Cells;背景說(shuō)明:該細(xì)胞源自76歲白人男性的左顳葉側(cè)膠質(zhì)瘤組織,有微絨毛,無(wú)橋粒。 ;傳代方法:1:4傳代,每周換液2次;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:成纖維細(xì)胞;相關(guān)產(chǎn)品有:RDES細(xì)胞、Hs606細(xì)胞、HuH-6細(xì)胞
HEC1-A Cells;背景說(shuō)明:這株細(xì)胞及其亞株HEC-1-B是H.Kuramoto及其同事1968年從一位IA期子宮內(nèi)膜癌患者身上分離得到的。PAF可以誘導(dǎo)其c-fos的表達(dá)。;傳代方法:消化3-5分鐘,1:2,3天內(nèi)可長(zhǎng)滿;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:上皮樣;相關(guān)產(chǎn)品有:C33A細(xì)胞、hA549細(xì)胞、LAPC-4細(xì)胞
NCTC-1469 Cells;背景說(shuō)明:1952年建系,源于正常C3H/An小鼠的肝臟組織,表達(dá)H-2K抗原,鼠痘病毒陰性。;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:淋巴母細(xì)胞;相關(guān)產(chǎn)品有:COLO-357細(xì)胞、Jeko1細(xì)胞、FRhK4細(xì)胞
LS174 Cells;背景說(shuō)明:LS 174T是LS 180 (ATCC CL 187)結(jié)腸腺癌細(xì)胞株的胰蛋白酶化變種。 它比親本更易傳代,象LS 180一樣生成大量的癌胚抗原(CEA)。 電鏡研究表明有豐富的微絲和細(xì)胞質(zhì)粘液素液泡。 直腸抗原3陽(yáng)性。 p53抗原表達(dá)陰性,但mRNA表達(dá)陽(yáng)性。 與ATCC CL-187來(lái)源于同一個(gè)腫瘤。LS 174T細(xì)胞角蛋白染色陽(yáng)性。 癌基因c-myc, N-myc, H-ras, N-ras, Myb, 和 fos的表達(dá)呈陽(yáng)性。 癌基因k-ras和sis的表達(dá)未做檢測(cè)。;傳代方法:1:2傳代;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:上皮樣;相關(guān)產(chǎn)品有:HIBEC細(xì)胞、33604細(xì)胞、H1838細(xì)胞
HSAEC49-KT Cells(提供STR鑒定圖譜)
KOLF2.1J SERPINI1 4.6KBDEL DEL/DEL Cells(提供STR鑒定圖譜)
MOLP-2/R Cells(提供STR鑒定圖譜)
NYSCF-050921-01-MR Cells(提供STR鑒定圖譜)
RG-327 Cells(提供STR鑒定圖譜)
Ubigene HeLa CCND3 KO Cells(提供STR鑒定圖譜)
WTC-mEGFP-DCP1A-cl124 Cells(提供STR鑒定圖譜)
HAP1 SS18 (-) 2 Cells(提供STR鑒定圖譜)
NIH:OVCAR-5 Cells;背景說(shuō)明:卵巢癌;腹水轉(zhuǎn)移;女性;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:Ca9-22細(xì)胞、HCT-GEO細(xì)胞、Hs870T細(xì)胞
GM15452 Cells;背景說(shuō)明:1957年,PuckTT從成年中國(guó)倉(cāng)鼠卵巢的活檢組織建立了CHO細(xì)胞,CHO-K1是CHO的一個(gè)亞克隆。CHO-K1的生長(zhǎng)需要脯酸。;傳代方法:1:2傳代;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:上皮樣;相關(guān)產(chǎn)品有:Hs 343.T細(xì)胞、Human Hepatocyte Line 5細(xì)胞、COLO 320細(xì)胞
VeroE6 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁或懸浮,詳見(jiàn)產(chǎn)品說(shuō)明書(shū)部分;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:HANK細(xì)胞、SF 767細(xì)胞、A-20細(xì)胞
WM-115 Cells;背景說(shuō)明:黑色素瘤;女性;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:NCIH1944細(xì)胞、MHHCALL2細(xì)胞、SK-BR-3細(xì)胞
SU-DHL-16 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁或懸浮,詳見(jiàn)產(chǎn)品說(shuō)明書(shū)部分;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:RH8994細(xì)胞、NPC-TW 01細(xì)胞、H184A1細(xì)胞
SU-DHL-16 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁或懸浮,詳見(jiàn)產(chǎn)品說(shuō)明書(shū)部分;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:RH8994細(xì)胞、NPC-TW 01細(xì)胞、H184A1細(xì)胞
OSC19 Cells;背景說(shuō)明:舌鱗癌;男性;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:BL-6細(xì)胞、SEG-1細(xì)胞、SU86_86細(xì)胞
SHSY5Y Cells;背景說(shuō)明:據(jù)報(bào)道,該細(xì)胞的密度可高達(dá)1×106cells/cm2,具有中等水平的多巴胺β羥化酶的活性。;傳代方法:1:2傳代;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:上皮樣;相關(guān)產(chǎn)品有:H1666細(xì)胞、MEF細(xì)胞、FL-83B細(xì)胞
18G3.cl 1 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁或懸浮,詳見(jiàn)產(chǎn)品說(shuō)明書(shū)部分;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:SNU-216細(xì)胞、NCI H157細(xì)胞、SKGIIIA細(xì)胞
alpha TC1.6 Cells;背景說(shuō)明:胰島素瘤;a細(xì)胞;C57BL/6xDBA/2;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:HO1N1細(xì)胞、MIN-6細(xì)胞、BC-024細(xì)胞
SUDHL2 Cells;背景說(shuō)明:彌漫性大細(xì)胞淋巴瘤;胸腔積液轉(zhuǎn)移;女性;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:懸浮;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:L-M (TK-)細(xì)胞、SV-HUC細(xì)胞、NCTC929細(xì)胞
SU8686 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2傳代;;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:BRL3A細(xì)胞、PANC-28細(xì)胞、LuCL4細(xì)胞
Dysplastic Oral Keratinocyte Cells;背景說(shuō)明:口腔異常增生;男性;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:ACC2細(xì)胞、SK-RC-42細(xì)胞、SKMEL1細(xì)胞
TFK1 Cells;背景說(shuō)明:膽管癌;男性;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:ID8細(xì)胞、H520細(xì)胞、HCC1143細(xì)胞
SU-DH-L5 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁或懸浮,詳見(jiàn)產(chǎn)品說(shuō)明書(shū)部分;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:PC 61細(xì)胞、RetroPack PT67細(xì)胞、EBTr細(xì)胞
STSAR-10 Cells(提供STR鑒定圖譜)
SDBMSC Cells;背景說(shuō)明:骨髓間充質(zhì)干細(xì)胞;SD;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:hSCC-25細(xì)胞、HSAS4細(xì)胞、VMM39細(xì)胞
Ca-Ski Cells;背景說(shuō)明:這株細(xì)胞是從小腸腸系膜轉(zhuǎn)移灶的細(xì)胞中建立的。 據(jù)報(bào)道,它含有完整的HPV-16(每個(gè)細(xì)胞大約600個(gè)拷貝)和HPV-18相關(guān)序列。;傳代方法:1:2傳代;生長(zhǎng)特性:貼壁生長(zhǎng);形態(tài)特性:上皮細(xì)胞樣;相關(guān)產(chǎn)品有:LIM1215細(xì)胞、KPNRTBM1細(xì)胞、L-1210細(xì)胞
COLO-320-DM Cells;背景說(shuō)明:該細(xì)胞可產(chǎn)生5-羥色胺、去甲、、ACTH和甲狀旁腺素。角蛋白、波形蛋白弱陽(yáng)性。培養(yǎng)條件: RPMI 1640 10%FBS;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:懸浮+貼壁;形態(tài)特性:淋巴細(xì)胞;相關(guān)產(chǎn)品有:GEO細(xì)胞、KYSE-520細(xì)胞、SW1353細(xì)胞
MGH-U3 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁或懸浮,詳見(jiàn)產(chǎn)品說(shuō)明書(shū)部分;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:RC-K8細(xì)胞、AR4-2J細(xì)胞、PANC1005細(xì)胞
NCTC929 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁或懸浮,詳見(jiàn)產(chǎn)品說(shuō)明書(shū)部分;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:OAW-42細(xì)胞、GM07404細(xì)胞、SK-N-BE(1)n細(xì)胞
TALL 1 Cells;背景說(shuō)明:該細(xì)胞源于一名復(fù)發(fā)T-ALL(急性T淋巴細(xì)胞性白血?。┑膬和耐庵苎?;具有很強(qiáng)的細(xì)胞毒性,體內(nèi)體外實(shí)驗(yàn)中都能破壞腫瘤細(xì)胞;IL-2可使細(xì)胞更好地生長(zhǎng);α/β TCR陽(yáng)性,γ/δ TCR陰性;可產(chǎn)生IFNγ、TNF-α和GM-CSF。;傳代方法:維持細(xì)胞密度在4×105-1×106 cells/ml之間,2-3天換液1次 ;生長(zhǎng)特性:懸浮生長(zhǎng);形態(tài)特性:淋巴母細(xì)胞;相關(guān)產(chǎn)品有:Michigan Cancer Foundation-12F細(xì)胞、SW837細(xì)胞、MPC-5細(xì)胞
HCT 116人結(jié)腸癌細(xì)胞代次低|培養(yǎng)基|送STR圖譜
CL11 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁或懸浮,詳見(jiàn)產(chǎn)品說(shuō)明書(shū)部分;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:HuH6細(xì)胞、P3-X63.Ag8.653細(xì)胞、HL7702細(xì)胞
SGC996 Cells;背景說(shuō)明:膽囊癌;女性;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:HEI-193細(xì)胞、HDF-a細(xì)胞、SNU-407細(xì)胞
H1770 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:隨細(xì)胞的生長(zhǎng)而換液;生長(zhǎng)特性:懸浮生長(zhǎng);形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:H-209細(xì)胞、HuH1細(xì)胞、Ku812細(xì)胞
GFP-Olig2 Cells;背景說(shuō)明:胚胎干細(xì)胞;129X1/SvJ;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:hTERT-RPE細(xì)胞、Tsup-1細(xì)胞、H-1435細(xì)胞
IM 9 Cells;背景說(shuō)明:詳見(jiàn)相關(guān)文獻(xiàn)介紹;傳代方法:1:3傳代,2-3天傳一代;生長(zhǎng)特性:懸浮生長(zhǎng);形態(tài)特性:淋巴母細(xì)胞樣;相關(guān)產(chǎn)品有:3T3 J2細(xì)胞、J774細(xì)胞、H-4細(xì)胞
MDA-MB-435 Cells;背景說(shuō)明:乳腺癌;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:NCI-H28細(xì)胞、LM1細(xì)胞、RKO-E6細(xì)胞
H-250 Cells;背景說(shuō)明:小細(xì)胞肺癌;男性;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:半貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:DHL10細(xì)胞、QGY7701細(xì)胞、293-FT細(xì)胞
MDAMB435 Cells;背景說(shuō)明:乳腺癌;傳代方法:1:2-1:3傳代;每周換液2-3次。;生長(zhǎng)特性:貼壁;形態(tài)特性:詳見(jiàn)產(chǎn)品說(shuō)明書(shū);相關(guān)產(chǎn)品有:HCA-7細(xì)胞、THC-8307細(xì)胞、MDCC-MSB-1細(xì)胞
BayGenomics ES cell line RHA202 Cells(提供STR鑒定圖譜)
BayGenomics ES cell line XE022 Cells(提供STR鑒定圖譜)
CPTC-TNFRSF9-2 Cells(提供STR鑒定圖譜)
MEF_Hsp47 KO-13 Cells(提供STR鑒定圖譜)
SK19-4C9 Cells(提供STR鑒定圖譜)
LO1.GAK Cells(提供STR鑒定圖譜)
" "PubMed=2835152
Boyd D., Florent G., Kim P., Brattain M.G.
Determination of the levels of urokinase and its receptor in human colon carcinoma cell lines.
Cancer Res. 48:3112-3116(1988)
PubMed=3335022
Alley M.C., Scudiero D.A., Monks A., Hursey M.L., Czerwinski M.J., Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.
Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.
Cancer Res. 48:589-601(1988)
PubMed=2041050; DOI=10.1093/jnci/83.11.757
Monks A., Scudiero D.A., Skehan P., Shoemaker R.H., Paull K.D., Vistica D.T., Hose C.D., Langley J., Cronise P., Vaigro-Wolff A., Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.
Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.
J. Natl. Cancer Inst. 83:757-766(1991)
PubMed=7972006; DOI=10.1073/pnas.91.23.11045; PMCID=PMC45163
Okamoto A., Demetrick D.J., Spillare E.A., Hagiwara K., Hussain S.P., Bennett W.P., Forrester K., Gerwin B.I., Serrano M., Beach D.H., Harris C.C.
Mutations and altered expression of p16INK4 in human cancer.
Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994)
PubMed=7761852; DOI=10.1126/science.7761852
Markowitz S.D., Wang J., Myeroff L.L., Parsons R., Sun L.-Z., Lutterbaugh J.D., Fan R.S., Zborowska E., Kinzler K.W., Vogelstein B., Brattain M.G., Willson J.K.V.
Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability.
Science 268:1336-1338(1995)
PubMed=7824277
Eshleman J.R., Lang E.Z., Bowerfind G.K., Parsons R., Vogelstein B., Willson J.K.V., Veigl M.L., Sedwick W.D., Markowitz S.D.
Increased mutation rate at the hprt locus accompanies microsatellite instability in colon cancer.
Oncogene 10:33-37(1995)
PubMed=9000147
Cottu P.-H., Muzeau F., Estreicher A., Flejou J.-F., Iggo R.D., Thomas G., Hamelin R.
Inverse correlation between RER+ status and p53 mutation in colorectal cancer cell lines.
Oncogene 13:2727-2730(1996)
PubMed=9000572
Hoang J.-M., Cottu P.-H., Thuille B., Salmon R.J., Thomas G., Hamelin R.
BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines.
Cancer Res. 57:300-303(1997)
PubMed=9023415; DOI=10.1006/cimm.1996.1062
Seki N., Hoshino T., Kikuchi M., Hayashi A., Itoh K.
HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer.
Cell. Immunol. 175:101-110(1997)
PubMed=9178645; DOI=10.1006/cimm.1997.1108
Nakao M., Sata M., Saitsu H., Yutani S., Kawamoto M., Kojiro M., Itoh K.
CD4+ hepatic cancer-specific cytotoxic T lymphocytes in patients with hepatocellular carcinoma.
Cell. Immunol. 177:176-181(1997)
PubMed=9294210; DOI=10.1073/pnas.94.19.10330; PMCID=PMC23362
Ilyas M., Tomlinson I.P.M., Rowan A.J., Pignatelli M., Bodmer W.F.
Beta-catenin mutations in cell lines established from human colorectal cancers.
Proc. Natl. Acad. Sci. U.S.A. 94:10330-10334(1997)
PubMed=9515795
Sparks A.B., Morin P.J., Vogelstein B., Kinzler K.W.
Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer.
Cancer Res. 58:1130-1134(1998)
PubMed=9715273; DOI=10.1038/sj.onc.1201986
Eshleman J.R., Casey G., Kochera M.E., Sedwick W.D., Swinler S.E., Veigl M.L., Willson J.K.V., Schwartz S., Markowitz S.D.
Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53.
Oncogene 17:719-725(1998)
PubMed=10674020; DOI=10.1016/S0959-8049(99)00206-3
Ku J.-L., Yoon K.-A., Kim D.-Y., Park J.-G.
Mutations in hMSH6 alone are not sufficient to cause the microsatellite instability in colorectal cancer cell lines.
Eur. J. Cancer 35:1724-1729(1999)
PubMed=10612807; DOI=10.1002/(SICI)1098-2264(200002)27:2<183::AID-GCC10>3.0.CO;2-P; PMCID=PMC4721570
Ghadimi B.M., Sackett D.L., Difilippantonio M.J., Schrock E., Neumann T., Jauho A., Auer G., Ried T.
Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations.
Genes Chromosomes Cancer 27:183-190(2000)
PubMed=10700174; DOI=10.1038/73432
Ross D.T., Scherf U., Eisen M.B., Perou C.M., Rees C., Spellman P.T., Iyer V.R., Jeffrey S.S., van de Rijn M., Waltham M.C., Pergamenschikov A., Lee J.C.F., Lashkari D., Shalon D., Myers T.G., Weinstein J.N., Botstein D., Brown P.O.
Systematic variation in gene expression patterns in human cancer cell lines.
Nat. Genet. 24:227-235(2000)
PubMed=10700188; DOI=10.1038/73536
Gayther S.A., Batley S.J., Linger L., Bannister A.J., Thorpe K., Chin S.-F., Daigo Y., Russell P., Wilson A., Sowter H.M., Delhanty J.D.A., Ponder B.A.J., Kouzarides T., Caldas C.
Mutations truncating the EP300 acetylase in human cancers.
Nat. Genet. 24:300-303(2000)
PubMed=10737795; DOI=10.1073/pnas.97.7.3352; PMCID=PMC16243
Rowan A.J., Lamlum H., Ilyas M., Wheeler J.M.D., Straub J., Papadopoulou A., Bicknell D.C., Bodmer W.F., Tomlinson I.P.M.
APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'.
Proc. Natl. Acad. Sci. U.S.A. 97:3352-3357(2000)
PubMed=11226274; DOI=10.1073/pnas.041603298; PMCID=PMC30173
Abdel-Rahman W.M., Katsura K., Rens W., Gorman P.A., Sheer D., Bicknell D.C., Bodmer W.F., Arends M.J., Wyllie A.H., Edwards P.A.W.
Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement.
Proc. Natl. Acad. Sci. U.S.A. 98:2538-2543(2001)
PubMed=11314036; DOI=10.1038/sj.onc.1204211
Forgacs E., Wren J.D., Kamibayashi C., Kondo M., Xu X.L., Markowitz S.D., Tomlinson G.E., Muller C.Y., Gazdar A.F., Garner H.R., Minna J.D.
Searching for microsatellite mutations in coding regions in lung, breast, ovarian and colorectal cancers.
Oncogene 20:1005-1009(2001)
PubMed=11414198; DOI=10.1007/s004320000207
Lahm H., Andre S., Hoeflich A., Fischer J.R., Sordat B., Kaltner H., Wolf E., Gabius H.-J.
Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.
J. Cancer Res. Clin. Oncol. 127:375-386(2001)
PubMed=11416159; DOI=10.1073/pnas.121616198; PMCID=PMC35459
Masters J.R.W., Thomson J.A., Daly-Burns B., Reid Y.A., Dirks W.G., Packer P., Toji L.H., Ohno T., Tanabe H., Arlett C.F., Kelland L.R., Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
Short tandem repeat profiling provides an international reference standard for human cell lines.
Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001)
PubMed=11526487; DOI=10.1038/sj.onc.1204611
Gayet J., Zhou X.-P., Duval A., Rolland S., Hoang J.-M., Cottu P.-H., Hamelin R.
Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines.
Oncogene 20:5025-5032(2001)
PubMed=11687795; DOI=10.1038/ng754
Snijders A.M., Nowak N.J., Segraves R., Blackwood S., Brown N., Conroy J., Hamilton G., Hindle A.K., Huey B., Kimura K., Law S., Myambo K., Palmer J., Ylstra B., Yue J.P., Gray J.W., Jain A.N., Pinkel D., Albertson D.G.
Assembly of microarrays for genome-wide measurement of DNA copy number.
Nat. Genet. 29:263-264(2001)
PubMed=12068308; DOI=10.1038/nature00766
Davies H.R., Bignell G.R., Cox C., Stephens P.J., Edkins S., Clegg S., Teague J.W., Woffendin H., Garnett M.J., Bottomley W., Davis N., Dicks E., Ewing R., Floyd Y., Gray K., Hall S., Hawes R., Hughes J., Kosmidou V., Menzies A., Mould C., Parker A., Stevens C., Watt S., Hooper S., Wilson R., Jayatilake H., Gusterson B.A., Cooper C.S., Shipley J.M., Hargrave D., Pritchard-Jones K., Maitland N.J., Chenevix-Trench G., Riggins G.J., Bigner D.D., Palmieri G., Cossu A., Flanagan A.M., Nicholson A., Ho J.W.C., Leung S.Y., Yuen S.T., Weber B.L., Seigler H.F., Darrow T.L., Paterson H.F., Marais R., Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.
Mutations of the BRAF gene in human cancer.
Nature 417:949-954(2002)
PubMed=12584437; DOI=10.1159/000068544
Melcher R., Koehler S., Steinlein C., Schmid M., Mueller C.R., Luehrs H., Menzel T., Scheppach W., Moerk H., Scheurlen M., Koehrle J., Al-Taie O.
Spectral karyotype analysis of colon cancer cell lines of the tumor suppressor and mutator pathway.
Cytogenet. Genome Res. 98:22-28(2002)
PubMed=12615714
Hempen P.M., Zhang L., Bansal R.K., Iacobuzio-Donahue C.A., Murphy K.M., Maitra A., Vogelstein B., Whitehead R.H., Markowitz S.D., Willson J.K.V., Yeo C.J., Hruban R.H., Kern S.E.
Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers.
Cancer Res. 63:994-999(2003)
PubMed=12671075; DOI=10.1073/pnas.0831040100; PMCID=PMC153619
Jongeneel C.V., Iseli C., Stevenson B.J., Riggins G.J., Lal A., Mackay A., Harris R.A., O'Hare M.J., Neville A.M., Simpson A.J.G., Strausberg R.L.
Comprehensive sampling of gene expression in human cell lines with massively parallel signature sequencing.
Proc. Natl. Acad. Sci. U.S.A. 100:4702-4705(2003)
PubMed=12714694; DOI=10.1093/mutage/18.3.277
Yamada N.A., Castro A., Farber R.A.
Variation in the extent of microsatellite instability in human cell lines with defects in different mismatch repair genes.
Mutagenesis 18:277-282(2003)
PubMed=15748285; DOI=10.1186/1479-5876-3-11; PMCID=PMC555742
Adams S., Robbins F.-M., Chen D., Wagage D., Holbeck S.L., Morse H.C. 3rd, Stroncek D., Marincola F.M.
HLA class I and II genotype of the NCI-60 cell lines.
J. Transl. Med. 3:11.1-11.8(2005)
PubMed=15900046; DOI=10.1093/jnci/dji133
Mashima T., Oh-hara T., Sato S., Mochizuki M., Sugimoto Y., Yamazaki K., Hamada J.-i., Tada M., Moriuchi T., Ishikawa Y., Kato Y., Tomoda H., Yamori T., Tsuruo T.
p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.
J. Natl. Cancer Inst. 97:765-777(2005)
PubMed=16418264; DOI=10.1073/pnas.0510146103; PMCID=PMC1327731
Liu Y., Bodmer W.F.
Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines.
Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006)
PubMed=16854228; DOI=10.1186/1476-4598-5-29; PMCID=PMC1550420
Bandres Elizalde E.M., Cubedo E., Agirre X., Malumbres R., Zarate R., Ramirez N., Abajo A., Navarro A., Moreno I., Monzo M., Garcia-Foncillas J.
Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.
Mol. Cancer 5:29.1-29.10(2006)
PubMed=17088437; DOI=10.1158/1535-7163.MCT-06-0433; PMCID=PMC2705832
Ikediobi O.N., Davies H.R., Bignell G.R., Edkins S., Stevens C., O'Meara S., Santarius T., Avis T., Barthorpe S., Brackenbury L., Buck G., Butler A.P., Clements J., Cole J., Dicks E., Forbes S., Gray K., Halliday K., Harrison R., Hills K., Hinton J., Hunter C., Jenkinson A., Jones D., Kosmidou V., Lugg R., Menzies A., Miroo T., Parker A., Perry J., Raine K.M., Richardson D., Shepherd R., Small A., Smith R., Solomon H., Stephens P.J., Teague J.W., Tofts C., Varian J., Webb T., West S., Widaa S., Yates A., Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.
Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.
Mol. Cancer Ther. 5:2606-2612(2006)
PubMed=17178751; DOI=10.1093/nar/gkl1030; PMCID=PMC1807964
Fiegler H., Geigl J.B., Langer S., Rigler D., Porter K., Unger K., Carter N.P., Speicher M.R.
High resolution array-CGH analysis of single cells.
Nucleic Acids Res. 35:e15.1-e15.10(2007)
PubMed=17363507; DOI=10.1158/1535-7163.MCT-06-0555
Wang J., Kuropatwinski K.K., Hauser J., Rossi M.R., Zhou Y.-F., Conway A., Kan J.L.C., Gibson N.W., Willson J.K.V., Cowell J.K., Brattain M.G.
Colon carcinoma cells harboring PIK3CA mutations display resistance to growth factor deprivation induced apoptosis.
Mol. Cancer Ther. 6:1143-1150(2007)
PubMed=18258742; DOI=10.1073/pnas.0712176105; PMCID=PMC2268141
Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.
Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.
Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008)
PubMed=18340113; DOI=10.4161/cbt.7.6.5838
Gongora C., Candeil L., Vezzio-Vie N., Copois V., Denis V., Bareil C., Molina F., Fraslon C., Conseiller E., Pau B., Martineau P., Del Rio M.
Altered expression of cell proliferation-related and interferon-stimulated genes in colon cancer cells resistant to SN38.
Cancer Biol. Ther. 7:822-832(2008)
PubMed=19372543; DOI=10.1158/1535-7163.MCT-08-0921; PMCID=PMC4020356
Lorenzi P.L., Reinhold W.C., Varma S., Hutchinson A.A., Pommier Y., Chanock S.J., Weinstein J.N.
DNA fingerprinting of the NCI-60 cell line panel.
Mol. Cancer Ther. 8:713-724(2009)
PubMed=19927377; DOI=10.1002/gcc.20730; PMCID=PMC2818350
Knutsen T., Padilla-Nash H.M., Wangsa D., Barenboim-Stapleton L., Camps J., McNeil N.E., Difilippantonio M.J., Ried T.
Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines.
Genes Chromosomes Cancer 49:204-223(2010)
PubMed=20164919; DOI=10.1038/nature08768; PMCID=PMC3145113
Bignell G.R., Greenman C.D., Davies H.R., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B.-Y., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Signatures of mutation and selection in the cancer genome.
Nature 463:893-898(2010)
PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458; PMCID=PMC2881662
Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Cancer Res. 70:2158-2164(2010)
PubMed=20570890; DOI=10.1158/0008-5472.CAN-10-0192; PMCID=PMC2943514
Janakiraman M., Vakiani E., Zeng Z.-S., Pratilas C.A., Taylor B.S., Chitale D., Halilovic E., Wilson M., Huberman K., Ricarte Filho J.C.M., Persaud Y., Levine D.A., Fagin J.A., Jhanwar S.C., Mariadason J.M., Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.
Genomic and biological characterization of exon 4 KRAS mutations in human cancer.
Cancer Res. 70:5901-5911(2010)
PubMed=20606684; DOI=10.1038/sj.bjc.6605780; PMCID=PMC2920028
Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.
5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.
Br. J. Cancer 103:340-346(2010)
PubMed=22068913; DOI=10.1073/pnas.1111840108; PMCID=PMC3219108
Gillet J.-P., Calcagno A.M., Varma S., Marino M., Green L.J., Vora M.I., Patel C., Orina J.N., Eliseeva T.A., Singal V., Padmanabhan R., Davidson B., Ganapathi R., Sood A.K., Rueda B.R., Ambudkar S.V., Gottesman M.M.
Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.
Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011)
PubMed=21912889; DOI=10.1007/s10637-011-9744-z
Sutherland H.S., Hwang I.Y., Marshall E.S., Lindsay B.S., Denny W.A., Gilchrist C., Joseph W.R., Greenhalgh D., Richardson E., Kestell P., Ding A., Baguley B.C.
Therapeutic reactivation of mutant p53 protein by quinazoline derivatives.
Invest. New Drugs 30:2035-2045(2012)
PubMed=22336246; DOI=10.1016/j.bmc.2012.01.017
Kong D.-X., Yamori T.
JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.
Bioorg. Med. Chem. 20:1947-1951(2012)
PubMed=22347499; DOI=10.1371/journal.pone.0031628; PMCID=PMC3276511
Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.
Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.
PLoS ONE 7:E31628-E31628(2012)
PubMed=22384151; DOI=10.1371/journal.pone.0032096; PMCID=PMC3285665
Lee J.-S., Kim Y.K., Kim H.J., Hajar S., Tan Y.L., Kang N.-Y., Ng S.H., Yoon C.N., Chang Y.-T.
Identification of cancer cell-line origins using fluorescence image-based phenomic screening.
PLoS ONE 7:E32096-E32096(2012)
PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Nature 483:603-607(2012)
PubMed=22628656; DOI=10.1126/science.1218595; PMCID=PMC3526189
Jain M., Nilsson R., Sharma S., Madhusudhan N., Kitami T., Souza A.L., Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.
Science 336:1040-1044(2012)
PubMed=23272949; DOI=10.1186/1755-8794-5-66; PMCID=PMC3543849
Schlicker A., Beran G., Chresta C.M., McWalter G., Pritchard A., Weston S., Runswick S., Davenport S., Heathcote K., Castro D.A., Orphanides G., French T., Wessels L.F.A.
Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines.
BMC Med. Genomics 5:66.1-66.15(2012)
PubMed=23546019; DOI=10.3892/ijo.2013.1868
Petitprez A., Poindessous V., Ouaret D., Regairaz M., Bastian G., Guerin E., Escargueil A.E., Larsen A.K.
Acquired irinotecan resistance is accompanied by stable modifications of cell cycle dynamics independent of MSI status.
Int. J. Oncol. 42:1644-1653(2013)
PubMed=23631600; DOI=10.1021/pr400260h
Loftus N.J., Lai L., Wilkinson R.W., Odedra R., Wilson I.D., Barnes A.J.
Global metabolite profiling of human colorectal cancer xenografts in mice using HPLC-MS/MS.
J. Proteome Res. 12:2980-2986(2013)
PubMed=23649806; DOI=10.1083/jcb.201210031; PMCID=PMC3653305
Kleiblova P., Shaltiel I.A., Benada J., Sevcik J., Pechackova S., Pohlreich P., Voest E.E., Dundr P., Bartek J., Kleibl Z., Medema R.H., Macurek L.
Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint.
J. Cell Biol. 201:511-521(2013)
PubMed=23671654; DOI=10.1371/journal.pone.0063056; PMCID=PMC3646030
Lu Y.-H., Soong T.D., Elemento O.
A novel approach for characterizing microsatellite instability in cancer cells.
PLoS ONE 8:E63056-E63056(2013)
PubMed=23856246; DOI=10.1158/0008-5472.CAN-12-3342; PMCID=PMC4893961
Abaan O.D., Polley E.C., Davis S.R., Zhu Y.-L.J., Bilke S., Walker R.L., Pineda M.A., Gindin Y., Jiang Y., Reinhold W.C., Holbeck S.L., Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.
The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.
Cancer Res. 73:4372-4382(2013)
PubMed=23933261; DOI=10.1016/j.celrep.2013.07.018
Moghaddas Gholami A., Hahne H., Wu Z.-X., Auer F.J., Meng C., Wilhelm M., Kuster B.
Global proteome analysis of the NCI-60 cell line panel.
Cell Rep. 4:609-620(2013)
PubMed=24042735; DOI=10.1038/oncsis.2013.35; PMCID=PMC3816225
Ahmed D., Eide P.W., Eilertsen I.A., Danielsen S.A., Eknaes M., Hektoen M., Lind G.E., Lothe R.A.
Epigenetic and genetic features of 24 colon cancer cell lines.
Oncogenesis 2:e71.1-e71.8(2013)
PubMed=24279929; DOI=10.1186/2049-3002-1-20; PMCID=PMC4178206
Dolfi S.C., Chan L.L.-Y., Qiu J., Tedeschi P.M., Bertino J.R., Hirshfield K.M., Oltvai Z.N., Vazquez A.
The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.
Cancer Metab. 1:20.1-20.13(2013)
PubMed=24670534; DOI=10.1371/journal.pone.0092047; PMCID=PMC3966786
Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.
High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.
PLoS ONE 9:E92047-E92047(2014)
PubMed=24755471; DOI=10.1158/0008-5472.CAN-14-0013
Mouradov D., Sloggett C., Jorissen R.N., Love C.G., Li S., Burgess A.W., Arango D., Strausberg R.L., Buchanan D., Wormald S., O'Connor L., Wilding J.L., Bicknell D.C., Tomlinson I.P.M., Bodmer W.F., Mariadason J.M., Sieber O.M.
Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.
Cancer Res. 74:3238-3247(2014)
PubMed=25960936; DOI=10.4161/21624011.2014.954893; PMCID=PMC4355981
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
OncoImmunology 3:e954893.1-e954893.12(2014)
PubMed=25984343; DOI=10.1038/sdata.2014.35; PMCID=PMC4432652
Cowley G.S., Weir B.A., Vazquez F., Tamayo P., Scott J.A., Rusin S., East-Seletsky A., Ali L.D., Gerath W.F.J., Pantel S.E., Lizotte P.H., Jiang G.-Z., Hsiao J., Tsherniak A., Dwinell E., Aoyama S., Okamoto M., Harrington W., Gelfand E.T., Green T.M., Tomko M.J., Gopal S., Wong T.C., Li H.-B., Howell S., Stransky N., Liefeld T., Jang D., Bistline J., Meyers B.H., Armstrong S.A., Anderson K.C., Stegmaier K., Reich M., Pellman D., Boehm J.S., Mesirov J.P., Golub T.R., Root D.E., Hahn W.C.
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Sci. Data 1:140035-140035(2014)
PubMed=25485619; DOI=10.1038/nbt.3080
Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
A comprehensive transcriptional portrait of human cancer cell lines.
Nat. Biotechnol. 33:306-312(2015)
PubMed=25576301; DOI=10.1074/mcp.M114.042812; PMCID=PMC4349985
Bassani-Sternberg M., Pletscher-Frankild S., Jensen L.J., Mann M.
Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation.
Mol. Cell. Proteomics 14:658-673(2015)
PubMed=25841592; DOI=10.1016/j.jprot.2015.03.019
Piersma S.R., Knol J.C., de Reus I., Labots M., Sampadi B.K., Pham T.V., Ishihama Y., Verheul H.M.W., Jimenez C.R.
Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines.
J. Proteomics 127:247-258(2015)
PubMed=25877200; DOI=10.1038/nature14397
Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
A resource for cell line authentication, annotation and quality control.
Nature 520:307-311(2015)
PubMed=25926053; DOI=10.1038/ncomms8002
Medico E., Russo M., Picco G., Cancelliere C., Valtorta E., Corti G., Buscarino M., Isella C., Lamba S., Martinoglio B., Veronese S., Siena S., Sartore-Bianchi A., Beccuti M., Mottolese M., Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.
The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.
Nat. Commun. 6:7002.1-7002.10(2015)
PubMed=25944804; DOI=10.1158/1078-0432.CCR-14-2457
Bazzocco S., Dopeso H., Carton-Garcia F., Macaya I., Andretta E., Chionh F., Rodrigues P., Garrido M., Alazzouzi H., Nieto R., Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.
Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.
Clin. Cancer Res. 21:3695-3704(2015)
PubMed=26169745; DOI=10.1186/s12967-015-0576-z; PMCID=PMC4499939
Halama A., Guerrouahen B.S., Pasquier J., Diboun I., Karoly E.D., Suhre K., Rafii A.
Metabolic signatures differentiate ovarian from colon cancer cell lines.
J. Transl. Med. 13:223.1-223.12(2015)
PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878
Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Genome Med. 7:118.1-118.7(2015)
PubMed=26719794; DOI=10.1186/s13742-015-0106-1; PMCID=PMC4696294
Teo A.S.M., Verzotto D., Yao F., Nagarajan N., Hillmer A.M.
Single-molecule optical genome mapping of a human HapMap and a colorectal cancer cell line.
GigaScience 4:65.1-65.6(2015)
PubMed=26537799; DOI=10.1074/mcp.M115.051235; PMCID=PMC4762531
Holst S., Deuss A.J.M., van Pelt G.W., van Vliet S.J., Garcia-Vallejo J.J., Koeleman C.A.M., Deelder A.M., Mesker W.E., Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.
N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.
Mol. Cell. Proteomics 15:124-140(2016)
PubMed=27377824; DOI=10.1038/sdata.2016.52; PMCID=PMC4932877
Mestdagh P., Lefever S., Volders P.-J., Derveaux S., Hellemans J., Vandesompele J.
Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.
Sci. Data 3:160052-160052(2016)
PubMed=27397505; DOI=10.1016/j.cell.2016.06.017; PMCID=PMC4967469
Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X.-M., Egan R.K., Liu Q.-S., Miroo T., Mitropoulos X., Richardson L., Wang J.-H., Zhang T.-H., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
A landscape of pharmacogenomic interactions in cancer.
Cell 166:740-754(2016)
PubMed=27807467; DOI=10.1186/s13100-016-0078-4; PMCID=PMC5087121
Zampella J.G., Rodic N., Yang W.R., Huang C.R.L., Welch J., Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.
A map of mobile DNA insertions in the NCI-60 human cancer cell panel.
Mob. DNA 7:20.1-20.11(2016)
PubMed=28179481; DOI=10.1158/1535-7163.MCT-16-0578
Tanaka N., Mashima T., Mizutani A., Sato A., Aoyama A., Gong B., Yoshida H., Muramatsu Y., Nakata K., Matsuura M., Katayama R., Nagayama S., Fujita N., Sugimoto Y., Seimiya H.
APC mutations as a potential biomarker for sensitivity to tankyrase inhibitors in colorectal cancer.
Mol. Cancer Ther. 16:752-762(2017)
PubMed=28192450; DOI=10.1371/journal.pone.0171435; PMCID=PMC5305277
Fasterius E., Raso C., Kennedy S.A., Rauch N., Lundin P., Kolch W., Uhlen M., Al-Khalili Szigyarto C.
A novel RNA sequencing data analysis method for cell line authentication.
PLoS ONE 12:E0171435-E0171435(2017)
PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005; PMCID=PMC5501076
Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.
Characterization of human cancer cell lines by reverse-phase protein arrays.
Cancer Cell 31:225-239(2017)
PubMed=28601559; DOI=10.1016/j.cels.2017.05.009; PMCID=PMC5493283
Bekker-Jensen D.B., Kelstrup C.D., Batth T.S., Larsen S.C., Haldrup C., Bramsen J.B., Sorensen K.D., Hoyer S., Orntoft T.F., Lindbjerg Andersen C., Nielsen M.L., Olsen J.V.
An optimized shotgun strategy for the rapid generation of comprehensive human proteomes.
Cell Syst. 4:587-599.e4(2017)
PubMed=28683746; DOI=10.1186/s12943-017-0691-y; PMCID=PMC5498998
Berg K.C.G., Eide P.W., Eilertsen I.A., Johannessen B., Bruun J., Danielsen S.A., Bjornslett M., Meza-Zepeda L.A., Eknaes M., Lind G.E., Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.
Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.
Mol. Cancer 16:116.1-116.16(2017)
PubMed=28854368; DOI=10.1016/j.celrep.2017.08.010; PMCID=PMC5583477
Roumeliotis T.I., Williams S.P., Goncalves E., Alsinet C., Del Castillo Velasco-Herrera M., Aben N., Ghavidel F.Z., Michaut M., Schubert M., Price S., Wright J.C., Yu L., Yang M., Dienstmann R., Guinney J.H., Beltrao P., Brazma A., Pardo M., Stegle O., Adams D.J., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Choudhary J.S.
Genomic determinants of protein abundance variation in colorectal cancer cells.
Cell Rep. 20:2201-2214(2017)
PubMed=29101300; DOI=10.15252/msb.20177701; PMCID=PMC5731344
Frejno M., Zenezini Chiozzi R., Wilhelm M., Koch H., Zheng R.-S., Klaeger S., Ruprecht B., Meng C., Kramer K., Jarzab A., Heinzlmeir S., Johnstone E., Domingo E., Kerr D.J., Jesinghaus M., Slotta-Huspenina J., Weichert W., Knapp S., Feller S.M., Kuster B.
Pharmacoproteomic characterisation of human colon and rectal cancer.
Mol. Syst. Biol. 13:951-951(2017)
PubMed=29207035; DOI=10.3892/ijo.2017.4206
Olejniczak A., Szarynska M., Kmiec Z.
In vitro characterization of spheres derived from colorectal cancer cell lines.
Int. J. Oncol. 52:599-612(2018)
PubMed=29444439; DOI=10.1016/j.celrep.2018.01.051; PMCID=PMC6343826
Yuan T.L., Amzallag A., Bagni R., Yi M., Afghani S., Burgan W., Fer N., Strathern L.A., Powell K., Smith B., Waters A.M., Drubin D.A., Thomson T., Liao R., Greninger P., Stein G.T., Murchie E., Cortez E., Egan R.K., Procter L., Bess M., Cheng K.T., Lee C.-S., Lee L.C., Fellmann C., Stephens R., Luo J., Lowe S.W., Benes C.H., McCormick F.
Differential effector engagement by oncogenic KRAS.
Cell Rep. 22:1889-1902(2018)
PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747; PMCID=PMC6445675
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Cancer Res. 79:1263-1273(2019)
PubMed=30971826; DOI=10.1038/s41586-019-1103-9
Behan F.M., Iorio F., Picco G., Goncalves E., Beaver C.M., Migliardi G., Santos R., Rao Y., Sassi F., Pinnelli M., Ansari R., Harper S., Jackson D.A., McRae R., Pooley R., Wilkinson P., van der Meer D.J., Dow D., Buser-Doepner C.A., Bertotti A., Trusolino L., Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
Nature 568:511-516(2019)
PubMed=31068700; DOI=10.1038/s41586-019-1186-3; PMCID=PMC6697103
Ghandi M., Huang F.W., Jane-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R. 3rd, Barretina J.G., Gelfand E.T., Bielski C.M., Li H.-X., Hu K., Andreev-Drakhlin A.Y., Kim J., Hess J.M., Haas B.J., Aguet F., Weir B.A., Rothberg M.V., Paolella B.R., Lawrence M.S., Akbani R., Lu Y.-L., Tiv H.L., Gokhale P.C., de Weck A., Mansour A.A., Oh C., Shih J., Hadi K., Rosen Y., Bistline J., Venkatesan K., Reddy A., Sonkin D., Liu M., Lehar J., Korn J.M., Porter D.A., Jones M.D., Golji J., Caponigro G., Taylor J.E., Dunning C.M., Creech A.L., Warren A.C., McFarland J.M., Zamanighomi M., Kauffmann A., Stransky N., Imielinski M., Maruvka Y.E., Cherniack A.D., Tsherniak A., Vazquez F., Jaffe J.D., Lane A.A., Weinstock D.M., Johannessen C.M., Morrissey M.P., Stegmeier F., Schlegel R., Hahn W.C., Getz G., Mills G.B., Boehm J.S., Golub T.R., Garraway L.A., Sellers W.R.
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Nature 569:503-508(2019)
PubMed=31978347; DOI=10.1016/j.cell.2019.12.023; PMCID=PMC7339254
Nusinow D.P., Szpyt J., Ghandi M., Rose C.M., McDonald E.R. 3rd, Kalocsay M., Jane-Valbuena J., Gelfand E.T., Schweppe D.K., Jedrychowski M.P., Golji J., Porter D.A., Rejtar T., Wang Y.K., Kryukov G.V., Stegmeier F., Erickson B.K., Garraway L.A., Sellers W.R., Gygi S.P.
Quantitative proteomics of the Cancer Cell Line Encyclopedia.
Cell 180:387-402.e16(2020)
PubMed=32172478; DOI=10.1007/s12253-020-00805-3
Xu Y.-T., Zhang L., Wang Q.-L., Zheng M.-J.
Comparison of different colorectal cancer with liver metastases models using six colorectal cancer cell lines.
Pathol. Oncol. Res. 26:2177-2183(2020)
PubMed=32927768; DOI=10.3390/cancers12092582; PMCID=PMC7564713
Schulte am Esch J., Windmoller B.A., Hanewinkel J., Storm J., Forster C., Wilkens L., Kruger M., Kaltschmidt B., Kaltschmidt C.
Isolation and characterization of two novel colorectal cancer cell lines, containing a subpopulation with potential stem-like properties: treatment options by MYC/NMYC inhibition.
Cancers (Basel) 12:2582.1-2582.34(2020)"
關(guān)鍵字: HCT 116人結(jié)腸癌細(xì)胞代次低|培養(yǎng)基;復(fù)蘇細(xì)胞系;細(xì)胞STR鑒定報(bào)告;細(xì)胞STR鑒定圖譜;ATCC|DSMZ細(xì)胞庫(kù);
公司提供ATCC、DSMZ、ECACC、NCI-DTP、RCB(Riken)等細(xì)胞系