成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

Toggle Nav
Close
  • Menu
  • Setting

Colchicine

Catalog No.
A3324
Tubulin Inhibitor
Grouped product items
SizePriceStock Qty
10mM (in 1mL DMSO)
$55.00
In stock
250mg
$50.00
In stock
500mg
$65.00
In stock
1g
$78.00
In stock
For scientific research use only and should not be used for diagnostic or medical purposes.

Tel: +1-832-696-8203

Email: [email protected]

Worldwide Distributors

Background

Colchicine, a tubulin inhibitor, which block polymerization of microtubules by binding to tubulin (IC50 = 3.2 μM).
Tubulin is one of several members of a small family of globular proteins. The tubulin superfamily includes five distinct families. To form microtubules, the dimers of α- and β-tubulin bind to GTP and assemble onto the (+) ends of microtubules while in the GTP-bound state.[1] The β-tubulin subunit is exposed on the plus end of the microtubule while the α-tubulin subunit is exposed on the minus end. After the dimer is incorporated into the microtubule, the molecule of GTP bound to the β-tubulin subunit eventually hydrolyzes into GDP through inter-dimer contacts along the microtubule protofilament.[2] This is the GTP cycle which is essential for the dynamic instability of the microtubule.
Colchicine inhibits microtubule polymerization by binding to tubulin, one of the main constituents of microtubules. Availability of tubulin is essential to mitosis, and therefore colchicine effectively functions as a "mitotic poison" or spindle poison.[3] So mitosis can be stopped before it completes near the middle of mitosis (specifically metaphase) in the cell cycle. Apart from inhibiting mitosis, colchicine also inhibits neutrophil motility and activity, leading to a net anti-inflammatory effect in 5 μmol/kg in a mouse model of gouty arthritis and inhibits the deposition of uric acid, a key aspect in the treatment of gout.[4] Side-effects include gastrointestinal upset and neutropenia. High doses can also damage bone marrow and lead to anemia and also cause hair loss.[5]
References:
1. Heald R, Nogales E. "Microtubule dynamics". J. Cell. Sci. 2002,115 (Pt 1): 3–4.
2. Howard J, Hyman A. "Dynamics and mechanics of the microtubule plus end". Nature 2003,422 (6933): 753–8.
3. "Information for Healthcare Professionals: New Safety Information for Colchicine (marketed as Colcrys)". U.S. Food and Drug Administration.
4. Chen LX, Schumacher HR. "Gout: an evidence-based review". J Clin Rheumatol 2008, 14: S55–62.
5. Colchicine. National Institute for Occupational Safety and Health. Emergency Response Safety and Health Database, August 22, 2008. Retrieved December 23, 2008.

Product Citation

Chemical Properties

Physical AppearanceA solid
StorageStore at -20°C
M.Wt399.44
Cas No.64-86-8
FormulaC22H25NO6
Solubility≥19.97 mg/mL in DMSO; ≥45.5 mg/mL in H2O with gentle warming; ≥50.8 mg/mL in EtOH with gentle warming
Chemical NameN-[(7S)-1,2,3,10-tetramethoxy-9-oxo-6,7-dihydro-5H-benzo[a]heptalen-7-yl]acetamide
SDFDownload SDF
Canonical SMILESCOC1=C(C(C([C@@H](NC(C)=O)CC2)=C3)=CC=C(OC)C3=O)C2=CC(OC)=C1OC
Shipping ConditionSmall Molecules with Blue Ice, Modified Nucleotides with Dry Ice.
General tips We do not recommend long-term storage for the solution, please use it up soon.

Protocol

Cell experiment:[1]

Cell lines

Rat cerebellar granule cells (CGCs)

Reaction Conditions

1 μM colchicine for 12 ~ 24 h incubation

Applications

Exposure to 1 μM colchicine, a microtubule disrupting agent, triggered apoptosis in rat CGCs. Apoptotic nuclei began to appear after 12 h followed by oligonucleosomal DNA laddering, whereas inhibition of the mitochondrial 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide metabolism became significant between 18 and 24 h, when most cells already had apoptotic nuclei.

Animal experiment:[2]

Animal models

Male C57BL/J6 mice, aged 8 ~ 12 weeks

Dosage form

5 μmol/kg

Administered orally

Applications

Oral colchicine inhibited monosodium urate (MSU)-induced superoxide production by neutrophils in vivo at doses 100 times lower than those required to inhibit neutrophil infiltration and without acute liver or renal toxicity. Neutrophils treated with colchicine in vivo still produced superoxide in response to another stimulus, 4-β-phorbol-12-myristate-13-acetate. These results show a beneficial effect of colchicine for the treatment of MSU-induced superoxide production in vivo at sub-toxic doses without compromising superoxide production by other physiological processes.

Note

The technical data provided above is for reference only.

References:

1. Bonfoco E, Ceccatelli S, Manzo L, et al. Colchicine induces apoptosis in cerebellar granule cells. Experimental Cell Research, 1995, 218(1): 189-200.

2. Chia EW, Grainger R, Harper JL. Colchicine suppresses neutrophil superoxide production in a murine model of gouty arthritis: a rationale for use of low-dose colchicine. British Journal of Pharmacology, 2008, 153(6): 1288-1295.

Quality Control