JavaScript seems to be disabled in your browser. For the best experience on our site, be sure to turn on Javascript in your browser.
Tel: +1-832-696-8203
Email: [email protected]
Worldwide Distributors
In vitro transcription of capped mRNA with modified nucleotides and Poly(A) tail
TSA (Tyramide Signal Amplification), used for signal amplification of ISH, IHC and IC etc.
Separation of phosphorylated and non-phosphorylated proteins without phospho-specific antibody
A convenient and sensitive way for cell proliferation assay and cytotoxicity assay
Protect the integrity of proteins from multiple proteases and phosphatases for different applications.
PACOCF3 is a inhibitor of both Ca2+-dependent cytosolic cPLA2 and Ca2+-independent phospholipases A2 iPLA2 with IC50 values of 45 μM and 3.8 μM [1,2], which is an innovate and potential candidate drug for inflammation, atherosclerosis, diabetes mellitus, therapeutic shock, cancer therapyetc [3,4,5,6]. It has been reported that PACOCF3 can inhibit PLA2 and reduce the inflammatory response. PACOCF3 also can stimulate insulin release at basal glucose levels (2 mmol/l). Application of PACOCF3 can inhibit endogenous arachidonic acid generation which significantly decreased the amplitude of the insulin secretory response to 20 mmol/l glucose [7,8]. PACOCF3 have a dual protective role in diabetes which could minimize β-cell dysfunction while maintaining insulin secretory output through enhancing endogenous arachidonic acid levels.
References:1. Murakami M et al.Emerging roles of secreted phospholipase A2 enzymes: The 3rd edition.Biochimie. 2014 Sep 16. pii: S0300-9084(14)00252-1.2. Quach ND et al. Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. Biochem Pharmacol. 2014 Aug 15;90(4):338-48. 3. Chalimoniuk M. Secretory phospholipase A2 and its role in oxidative stress and inflammation]. Postepy Biochem. 2012;58(2):204-8.4. Persaud SJ.et al. The role of arachidonic acid and its metabolites in insulin secretion from human islets of langerhans. Diabetes. 2007 Jan;56(1):197-203.5. Khakpour H et al. Lipoprotein-associated phospholipase A2: an independent predictor of cardiovascular risk and a novel target for immunomodulation therapy. Cardiol Rev. 2009 Sep-Oct;17(5):222-9. 6. Narendra Sharath Chandra JN1 et al. Chemistry and structural evaluation of different phospholipase A2 inhibitors in arachidonic acid pathway mediated inflammation and snake venom toxicity. Curr Top Med Chem. 2007;7(8):787-800.7. Packard CJ. Lipoprotein-associated phospholipase A2 as a biomarker of coronary heart disease and a therapeutic target. Curr Opin Cardiol. 2009 Jul;24(4):358-63.8. Lucas R et al. Synthesis and enzyme inhibitory activities of a series of lipidic diamine and aminoalcohol derivatives on cytosolic and secretory phospholipases A2. Bioorg Med Chem Lett. 2000 Feb 7;10(3):285-8.