成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

Home Cart 0 Sign in  

[ CAS No. 71989-38-3 ] {[proInfo.proName]}

,{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]}
Chemical Structure| 71989-38-3
Chemical Structure| 71989-38-3
Structure of 71989-38-3 * Storage: {[proInfo.prStorage]}

Please Login or Create an Account to: See VIP prices and availability

Cart0 Add to My Favorites Add to My Favorites Bulk Inquiry Inquiry Add To Cart

Search after Editing

* Storage: {[proInfo.prStorage]}

* Shipping: {[proInfo.prShipping]}

Quality Control of [ 71989-38-3 ]

Related Doc. of [ 71989-38-3 ]

Alternatived Products of [ 71989-38-3 ]
Product Citations

Product Details of [ 71989-38-3 ]

CAS No. :71989-38-3 MDL No. :MFCD00037129
Formula : C28H29NO5 Boiling Point : -
Linear Structure Formula :C9H11NO3C4H8C15H10O2 InChI Key :JAUKCFULLJFBFN-VWLOTQADSA-N
M.W : 459.53 Pubchem ID :10895791
Synonyms :

Safety of [ 71989-38-3 ]

Signal Word:Warning Class:N/A
Precautionary Statements:P261-P305+P351+P338 UN#:N/A
Hazard Statements:H315-H319-H335 Packing Group:N/A
GHS Pictogram:

Application In Synthesis of [ 71989-38-3 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 71989-38-3 ]

[ 71989-38-3 ] Synthesis Path-Downstream   1~17

  • 1
  • [ 29022-11-5 ]
  • [ 35661-40-6 ]
  • [ 108-24-7 ]
  • [ 71989-38-3 ]
  • [ 198561-07-8 ]
  • Ac-Tyr-Asp-Phe-Gly-OH [ No CAS ]
  • 2
  • Fmoc-Leu-Wang resin [ No CAS ]
  • [ 71989-31-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 132684-60-7 ]
  • [ 198561-07-8 ]
  • C43H69N9O9 [ No CAS ]
  • 3
  • Fmoc-Leu-Wang resin [ No CAS ]
  • [ 71989-31-6 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • [ 198561-07-8 ]
  • [ 1198076-80-0 ]
  • 4
  • [ 159610-89-6 ]
  • [ 68858-20-8 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 77284-32-3 ]
  • [ 94744-50-0 ]
  • N,N'-bis(tert-butyloxycarbonyl)-L-lysine dicyclohexylamine salt [ No CAS ]
  • [ 198561-07-8 ]
  • [ 1443329-49-4 ]
  • 5
  • [ 29022-11-5 ]
  • [ 71989-31-6 ]
  • [ 71989-18-9 ]
  • [ 71989-38-3 ]
  • [ 132388-59-1 ]
  • [ 132327-80-1 ]
  • (S)-6-[(Diphenyl-p-tolyl-methyl)-amino]-2-(9H-fluoren-9-ylmethoxycarbonylamino)-hexanoic acid [ No CAS ]
  • [ 58-85-5 ]
  • [ 198561-07-8 ]
  • C66H94N20O21S [ No CAS ]
YieldReaction ConditionsOperation in experiment
General procedure: 4.1.1. Peptide synthesis; 4.1.2; Solid-phase peptide synthesis (SPPS) was performed with standardFmoc chemistry on rink amide resin using an automated peptidesynthesizer (Syro I, Multisyntech). The resin was loaded into a5 mL reactor with a frit at the bottom. Swelling was performed bydispensing 1 mL DMF and incubating for 15 min (2) with 10 sshaking every minute. Fmoc deprotection was achieved by treatmentwith 40percent piperidine DMF for 3 min and 20percent piperidine inDMF for 12 min (10 s/min shaking). Peptide couplings were carriedout by double couplings with Fmoc-protected amino acids(5 equiv), HBTU (5 equiv), HOBt (5 equiv) and DIPEA (10 equiv) inDMF for 40 min (10 s/min shaking). At the respective position,Fmoc-F2Pmp-OH (3 equiv) was coupled in DMF (1 mL) by manualaddition using TBTU (3 equiv), HOBt (3 equiv) and DIPEA (6 equiv)for 3 h, after 3 min preactivation. In case of the sequences for which side-chain labeling with biotinor carboxyfluorescein was planned, an additional 4-methyltrityl-(Mtt-) protected lysine was coupled to the N-terminus. Toselectively remove the Mtt group the resin was washed for 1 minwith DCM (3), deprotection was then achieved by treatment with1.8percent TFA in DCM for 3 min (10). During the deprotection the DCMsolution turned yellow.For fluorescein-labeling of the amine side-chain 5(6)-carboxyfluorescein(3 equiv), HATU (3 equiv), HOAt (3 equiv) andDIPEA (6 equiv) were dissolved in DMF and pre-activated for3 min. The solution was aspirated and coupling was allowed toproceed for 1 h. This step was repeated 4 times.For biotin-labeling of the amine side-chain the resin waswashed for 1 min in NMP (3). D-(+)-Biotin (3 equiv), HATU(3 equiv), HOAt (3 equiv) and DIPEA (6 equiv) were dissolved inNMP and pre-activated for 3 min. The solution was aspirated andcoupling was allowed to proceed for 2 h. This step was repeated2 times. N-terminal acetylation (where applicable) was achieved by dispensing800 lL of a mixture of acetic anhydride/pyridine (1:9) andreaction twice for 5 min (10 s/min shaking). After each deprotection,coupling or acetylation step, 5 washings (1 min each) withDMF were performed (10 s/min shaking).After synthesis the resin was transferred in a 5 mL syringeequipped with a frit, washed with DCM for 1 min (3) and driedin high vacuum for at least 30 min. For cleavage 1 mL of a mixtureof TFA and TIS (20:1) was added. The syringe with the mixture waskept on a shaker for 3 h. Then the liquid phase was filtered into20 mL of ice-cold Et2O. Formed precipitate was centrifuged,washed with ice-cold Et2O (2 20 mL) and purified by HPLC. 4.1.2. Azide functionalization of the N-terminus; To the peptides with the longer carbon linker, 6-azidohexanoicacid was coupled (with standard coupling conditions) to the Nterminalamine.The N-terminal amine of the peptides with the shorter linkerwas converted to an azide functionality directly on solid support.Using the compound imidazole-1-sulfonyl-azide*HCl (synthesissee beneath) and modified conditions, which were reported forsolution phase chemistry from Goddard?Borger and Stick:8 Theresin was washed for 1 min each with DCM (2), DCM/MeOH(2) and MeOH (3). Then (for 40 mg resin, loading= 0.62 mmole/g) 1.4 equiv of imidazole-1-sulfonyl-azide*HClin 1 mL MeOH and 100 ll of a saturated and centrifuged solutionof CuSO4*5H2O was added. After 1 min, DIPEA (1.8 equiv) wasadded and the coupling was allowed to proceed for 1 h andrepeated once more with an intermediate washing with MeOH(3 1 min).
  • 6
  • [ 79598-53-1 ]
  • [ 29022-11-5 ]
  • [ 71989-31-6 ]
  • [ 71989-18-9 ]
  • [ 71989-38-3 ]
  • [ 132388-59-1 ]
  • [ 132327-80-1 ]
  • (S)-6-[(Diphenyl-p-tolyl-methyl)-amino]-2-(9H-fluoren-9-ylmethoxycarbonylamino)-hexanoic acid [ No CAS ]
  • [ 58-85-5 ]
  • [ 198561-07-8 ]
  • C72H105N21O22S [ No CAS ]
YieldReaction ConditionsOperation in experiment
General procedure: 4.1.1. Peptide synthesis; 4.1.2; Solid-phase peptide synthesis (SPPS) was performed with standardFmoc chemistry on rink amide resin using an automated peptidesynthesizer (Syro I, Multisyntech). The resin was loaded into a5 mL reactor with a frit at the bottom. Swelling was performed bydispensing 1 mL DMF and incubating for 15 min (2) with 10 sshaking every minute. Fmoc deprotection was achieved by treatmentwith 40percent piperidine DMF for 3 min and 20percent piperidine inDMF for 12 min (10 s/min shaking). Peptide couplings were carriedout by double couplings with Fmoc-protected amino acids(5 equiv), HBTU (5 equiv), HOBt (5 equiv) and DIPEA (10 equiv) inDMF for 40 min (10 s/min shaking). At the respective position,Fmoc-F2Pmp-OH (3 equiv) was coupled in DMF (1 mL) by manualaddition using TBTU (3 equiv), HOBt (3 equiv) and DIPEA (6 equiv)for 3 h, after 3 min preactivation. In case of the sequences for which side-chain labeling with biotinor carboxyfluorescein was planned, an additional 4-methyltrityl-(Mtt-) protected lysine was coupled to the N-terminus. Toselectively remove the Mtt group the resin was washed for 1 minwith DCM (3), deprotection was then achieved by treatment with1.8percent TFA in DCM for 3 min (10). During the deprotection the DCMsolution turned yellow.For fluorescein-labeling of the amine side-chain 5(6)-carboxyfluorescein(3 equiv), HATU (3 equiv), HOAt (3 equiv) andDIPEA (6 equiv) were dissolved in DMF and pre-activated for3 min. The solution was aspirated and coupling was allowed toproceed for 1 h. This step was repeated 4 times.For biotin-labeling of the amine side-chain the resin waswashed for 1 min in NMP (3). D-(+)-Biotin (3 equiv), HATU(3 equiv), HOAt (3 equiv) and DIPEA (6 equiv) were dissolved inNMP and pre-activated for 3 min. The solution was aspirated andcoupling was allowed to proceed for 2 h. This step was repeated2 times. N-terminal acetylation (where applicable) was achieved by dispensing800 lL of a mixture of acetic anhydride/pyridine (1:9) andreaction twice for 5 min (10 s/min shaking). After each deprotection,coupling or acetylation step, 5 washings (1 min each) withDMF were performed (10 s/min shaking).After synthesis the resin was transferred in a 5 mL syringeequipped with a frit, washed with DCM for 1 min (3) and driedin high vacuum for at least 30 min. For cleavage 1 mL of a mixtureof TFA and TIS (20:1) was added. The syringe with the mixture waskept on a shaker for 3 h. Then the liquid phase was filtered into20 mL of ice-cold Et2O. Formed precipitate was centrifuged,washed with ice-cold Et2O (2 20 mL) and purified by HPLC. 4.1.2. Azide functionalization of the N-terminus; To the peptides with the longer carbon linker, 6-azidohexanoicacid was coupled (with standard coupling conditions) to the Nterminalamine.The N-terminal amine of the peptides with the shorter linkerwas converted to an azide functionality directly on solid support.Using the compound imidazole-1-sulfonyl-azide*HCl (synthesissee beneath) and modified conditions, which were reported forsolution phase chemistry from Goddard?Borger and Stick:8 Theresin was washed for 1 min each with DCM (2), DCM/MeOH(2) and MeOH (3). Then (for 40 mg resin, loading= 0.62 mmole/g) 1.4 equiv of imidazole-1-sulfonyl-azide*HClin 1 mL MeOH and 100 ll of a saturated and centrifuged solutionof CuSO4*5H2O was added. After 1 min, DIPEA (1.8 equiv) wasadded and the coupling was allowed to proceed for 1 h andrepeated once more with an intermediate washing with MeOH(3 1 min).
  • 7
  • [ 35661-60-0 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 198561-07-8 ]
  • Ac-YLXKLLKLLXKLLK-NH2; X=propargyl glicine [ No CAS ]
  • 8
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • N4-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-N2-(9-fluorenylmethylcarbonyl)asparagine [ No CAS ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 103213-32-7 ]
  • [ 71989-35-0 ]
  • [ 132388-59-1 ]
  • [ 132327-80-1 ]
  • [ 109425-51-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • [ 198561-07-8 ]
  • KCNTATCATQRLANFLVHSS-(α-propargylglycinyl)-NFGPILPPTNVGS-(N4-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)asparaginyl)-TY-NH2 [ No CAS ]
  • 9
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • N4-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-N2-(9-fluorenylmethylcarbonyl)asparagine [ No CAS ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 103213-32-7 ]
  • [ 71989-35-0 ]
  • [ 132388-59-1 ]
  • [ 132327-80-1 ]
  • [ 109425-51-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • [ 198561-07-8 ]
  • KCNTATCATQRLANFLVHSS-(N4-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)asparaginyl)-NFGPILPPTNVGS-(α-propargylglycinyl)-TY-NH2 [ No CAS ]
  • 10
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 103213-32-7 ]
  • [ 71989-35-0 ]
  • [ 132388-59-1 ]
  • [ 132327-80-1 ]
  • [ 109425-51-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • [ 198561-07-8 ]
  • K-CNTATCATQRLANFLVHSSNNFGPILPPTNVGS-(α-propargylglycinyl)-TY-NH2 [ No CAS ]
  • 11
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 103213-32-7 ]
  • [ 71989-35-0 ]
  • [ 132388-59-1 ]
  • [ 132327-80-1 ]
  • [ 109425-51-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • [ 198561-07-8 ]
  • K-CNTATCATQRLANFLVHSS-(α-propargylglycinyl)-NFGPILPPTNVGS-(α-propargylglycinyl)-TY-NH2 [ No CAS ]
  • 12
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 103213-32-7 ]
  • [ 71989-35-0 ]
  • [ 132388-59-1 ]
  • [ 132327-80-1 ]
  • [ 109425-51-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • [ 198561-07-8 ]
  • KCNTATCATQRLANFLVHSS-(α-propargylglycinyl)-NFGPILPPTNVGSNTY-NH2 [ No CAS ]
  • 13
  • [ 1266778-58-8 ]
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 35661-40-6 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • [ 198561-07-8 ]
  • YGGFLRRIR-P(Di)-K-Pra-K-NH<SUB>2</SUB>; P(Di) = L-proline-4-spiro-3-(3H-diazirine) [ No CAS ]
  • 14
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • 2-([(9H-fluoren-9-yl)methoxy]carbonyl}amino)-3-(4-benzoylphenyl)propanoic acid [ No CAS ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • [ 198561-07-8 ]
  • YGGFLRRIRPKLK-Bpa-Pra-NH<SUB>2</SUB> [ No CAS ]
  • 15
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 71989-31-6 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • 2-([(9H-fluoren-9-yl)methoxy]carbonyl}amino)-3-(4-benzoylphenyl)propanoic acid [ No CAS ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • [ 198561-07-8 ]
  • YGG-Bpa-LRRIRPKLK-Pra-NH<SUB>2</SUB> [ No CAS ]
  • 16
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 71989-31-6 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • 2-([(9H-fluoren-9-yl)methoxy]carbonyl}amino)-3-(4-benzoylphenyl)propanoic acid [ No CAS ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • [ 198561-07-8 ]
  • Pra-Bpa-KYRRIGPRGKL-NH<SUB>2 </SUB> [ No CAS ]
  • 17
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 71989-31-6 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • [ 198561-07-8 ]
  • Fmoc-Phe-(4-N3)-OH [ No CAS ]
  • YGG-ArN<SUB>3</SUB>-LRRIRPKLK-NH<SUB>2</SUB>; ArN<SUB>3 </SUB>= 4-azidophenylalanine [ No CAS ]
Recommend Products
Same Skeleton Products

Technical Information

Historical Records

Related Functional Groups of
[ 71989-38-3 ]

Amino Acid Derivatives

Chemical Structure| 118488-18-9

[ 118488-18-9 ]

Fmoc-D-Tyr(tBu)-OH

Similarity: 1.00

Chemical Structure| 162502-65-0

[ 162502-65-0 ]

Fmoc-D-Tyr(4-Et)-OH

Similarity: 0.96

Chemical Structure| 133373-24-7

[ 133373-24-7 ]

Fmoc-N-Me-Tyr(tBu)-OH

Similarity: 0.95

Chemical Structure| 71989-40-7

[ 71989-40-7 ]

Fmoc-Tyr(Bzl)-OH

Similarity: 0.95

Chemical Structure| 133852-23-0

[ 133852-23-0 ]

Fmoc-Tyr-OtBu

Similarity: 0.94

; ;