成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

Home Cart Sign in  
HazMat Fee +

There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.

Type HazMat fee for 500 gram (Estimated)
Excepted Quantity USD 0.00
Limited Quantity USD 15-60
Inaccessible (Haz class 6.1), Domestic USD 80+
Inaccessible (Haz class 6.1), International USD 150+
Accessible (Haz class 3, 4, 5 or 8), Domestic USD 100+
Accessible (Haz class 3, 4, 5 or 8), International USD 200+
Chemical Structure| 6674-22-2 Chemical Structure| 6674-22-2
Chemical Structure| 6674-22-2

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

{[proInfo.proName]}

CAS No.: 6674-22-2

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support Online Technical Q&A
Product Citations

Product Citations      Show More

Artem Chayka ; Michal ?esnek ; Erika Ku?mová ; Jaroslav Kozák ; Eva Tlou?t' ; ová , et al.

Abstract: Yohimbine, a natural alkaloid and a nonselective adrenoceptor antagonist, possesses potential benefits in treating inflammatory disorders and sepsis. Nevertheless, its broader clinical use faces challenges due to its low receptor selectivity. A structure–activity relationship study of novel yohimbine analogues identified amino of yohimbic acid as potent and selective ADRA2A antagonists. Specifically, amino 4n, in comparison to yohimbine, showed a 6-fold higher ADRA1A/ADRA2A selectivity index (SI > 556 for 4n) and a 25-fold higher ADRA2B/ADRA2A selectivity index. Compound 4n also demonstrated high plasma and microsomal stability, moderate-to-low membrane permeability determining its limited ability to cross the blood–brain barrier, and negligible toxicity on nontumor normal human dermal fibroblasts. Compound 4n represents an important complementary pharmacological tool to study the involvement of adrenoceptor subtypes in pathophysiologic conditions such as inflammation and sepsis and a novel candidate for further preclinical development to treat ADRA2A-mediated pathologies.

Purchased from AmBeed: ; ;

Jan Nowak ; Micha? Tryniszewski ; Micha? Barbasiewicz ;

Abstract: Heteroatom-based olefinating reagents (e.g., organic phosphonates, sulfonates, etc.) are used to transform carbonyl compounds into alkenes, and their mechanism of action involves aldol-type addition, cyclization, and fragmentation of four-membered ring intermediates. We have developed an analogous process using ethyl 1,1,1,3,3,3-hexafluoroisopropyl methylmalonate, which converts electrophilic aryl aldehydes into α-methylcinnamates in up to 70% yield. The reaction plausibly proceeds through the formation of β-lactone that spontaneously decarboxylates under the reaction conditions. The results shed light on the Knoevenagel–Doebner olefination, for which decarboxylative anti-fragmentation of aldol-type adducts is usually considered.

Keywords: olefination ; carbonyl compounds ; reaction mechanism ; lactones ; malonates ; Knoevenagel ; Doebner reaction

Purchased from AmBeed: ; ; ; ; ; ;

Thomson, Brodie ;

Abstract: Sulfur(IV) fluorides are powerful synthetic reagents typically used in the fluorination of small molecules. Traditional examples, including SF4 and DAST, were primarily applied in the deoxyfluorinations of alcohols, carbonyls and carboxylic acids. More recent sulfur(IV) fluoride analogues, including thionyl fluoride and XtalFluor-E? , display unique reactivity relative to DAST and SF4, yet have rarely been applied outside of similar organic transformations. In this thesis, the unique reactivities of thionyl fluoride and XtalFluor-E? were investigated and utilised towards the synthesis of acyl fluorides, sulfonyl fluorides, sulfinyl fluorides, and arylaminooxetanes. Chapter 2 describes the utilization of thionyl fluoride in a carboxylic acid activation strategy to synthesize acyl fluorides. The desired products were synthesized in high yields (60–99%) under mild conditions and quantified either in solution using 19F NMR spectroscopy or isolated in a column-free protocol. Chapter 3 describes the efforts made in improving the synthesis of sulfonyl fluorides and sulfinyl fluorides. In one transformation, sulfonic acids were derivatized in a DMF-promoted, thionyl fluoride-mediated fluorination, affording sulfonyl fluorides in high yields (80-99%). A complementary strategy utilising XtalFluor-E? accessed the same products in good isolated yields (41-94%), but milder conditions. Thionyl fluoride was also used to transform sulfinic acids to sulfinyl fluorides in a one-pot strategy, accessing sulfinyl fluorides in high crude yields (75-98%) quantified by 19F NMR spectroscopy. This represents the first general method reported towards their synthesis. Chapter 4 describes an expedited route towards the synthesis of arylamino-oxetanes via the XtalFluor-E?-mediated activation of 3-aryloxetan-3-ols. The optimised protocol accessed arylamino-oxetanes under mild conditions and reduced the number of steps required in their syntheses (between 2-6) compared to current literature procedures. This represents the shortest and simplest route towards their synthesis, accessing the desired products in 34-97% isolated yields. Chapter 6 is a distinct chapter in collaboration with Delic Laboratories, UBC and BAT, in which the light-induced degradation of CBD solutions was investigated. CBD-hydroxyquinone was identified to undergo a light-induced photo-isomerisation to form a previously unidentified cannabinoid intermediate. Both experimental and computation studies identified this intermediate reacts rapidly with oxygen to form a multitude of products in solution.

Purchased from AmBeed: ; ; ;

Alternative Products

Product Details of [ 6674-22-2 ]

CAS No. :6674-22-2
Formula : C9H16N2
M.W : 152.24
SMILES Code : N12C(CCCCC2)=NCCC1
MDL No. :MFCD00006930
InChI Key :GQHTUMJGOHRCHB-UHFFFAOYSA-N
Pubchem ID :81184

Safety of [ 6674-22-2 ]

GHS Pictogram:
Signal Word:Danger
Hazard Statements:H290-H301-H314-H412
Precautionary Statements:P234-P273-P280-P303+P361+P353-P304+P340+P310-P305+P351+P338
Class:8(6.1)
UN#:2922
Packing Group:

Calculated chemistry of [ 6674-22-2 ] Show Less

Physicochemical Properties

Num. heavy atoms 11
Num. arom. heavy atoms 0
Fraction Csp3 0.89
Num. rotatable bonds 0
Num. H-bond acceptors 1.0
Num. H-bond donors 0.0
Molar Refractivity 54.97
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

15.6 ?2

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

2.14
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

1.38
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

0.9
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

1.88
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

2.41
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.74

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-1.65
Solubility 3.38 mg/ml ; 0.0222 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-1.31
Solubility 7.44 mg/ml ; 0.0489 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-1.73
Solubility 2.84 mg/ml ; 0.0187 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

No
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.25 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.95

Application In Synthesis of [ 6674-22-2 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 6674-22-2 ]
  • Downstream synthetic route of [ 6674-22-2 ]

[ 6674-22-2 ] Synthesis Path-Upstream   1~1

  • 1
  • [ 13734-36-6 ]
  • [ 6674-22-2 ]
  • [ 74-88-4 ]
  • [ 42492-57-9 ]
References: [1] Patent: US5494925, 1996, A, .
[2] Patent: US5512576, 1996, A, .
[3] Patent: US5541168, 1996, A, .
[4] Patent: US5556909, 1996, A, .
[5] Patent: US5602154, 1997, A, .
 

Historical Records

Categories