成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

Home Cart Sign in  
Chemical Structure| 593-85-1 Chemical Structure| 593-85-1
Chemical Structure| 593-85-1

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

{[proInfo.proName]}

CAS No.: 593-85-1

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support Online Technical Q&A
Product Citations

Alternative Products

Product Details of [ 593-85-1 ]

CAS No. :593-85-1
Formula : C3H12N6O3
M.W : 180.17
SMILES Code : NC(=N)N.NC(=N)N.OC(=O)O
MDL No. :MFCD00013029
InChI Key :STIAPHVBRDNOAJ-UHFFFAOYSA-N
Pubchem ID :11650

Safety of [ 593-85-1 ]

GHS Pictogram:
Signal Word:Danger
Hazard Statements:H302-H318-H402
Precautionary Statements:P264-P270-P273-P280-P301+P312+P330-P305+P351+P338+P310-P501

Calculated chemistry of [ 593-85-1 ] Show Less

Physicochemical Properties

Num. heavy atoms 12
Num. arom. heavy atoms 0
Fraction Csp3 0.0
Num. rotatable bonds 0
Num. H-bond acceptors 5.0
Num. H-bond donors 8.0
Molar Refractivity 42.51
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

209.31 ?2

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

-1.05
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

-2.82
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

-2.1
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

-3.07
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-0.79
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

-1.97

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

0.82
Solubility 1190.0 mg/ml ; 6.6 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Highly soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-1.02
Solubility 17.2 mg/ml ; 0.0954 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

0.92
Solubility 1510.0 mg/ml ; 8.36 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

Low
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

No
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-9.4 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

1.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

1.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

1.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

5.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

2.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.11

Application In Synthesis [ 593-85-1 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 593-85-1 ]
  • Downstream synthetic route of [ 593-85-1 ]

[ 593-85-1 ] Synthesis Path-Upstream   1~3

  • 1
  • [ 593-85-1 ]
  • [ 94-02-0 ]
  • [ 56741-94-7 ]
YieldReaction ConditionsOperation in experiment
70% at 80℃; Inert atmosphere General procedure: To a suspension of guanidine carbonate (1.5-5 eq) in ethanol (2 mL/mmol) was added γ-aryl-β-ketoester (1.43-26.6 mmol), and the reaction mixture heated at 80 °C for 15-64 h. Followingreaction completion by TLC, the mixture was cooled to ambient temperature, filtered and thesolid triturated with water (5-20 mL) and acetone (5-20 mL) to give the title compound.
References: [1] Tetrahedron, 2015, vol. 71, # 39, p. 7339 - 7343.
[2] Journal of the American Chemical Society, 1998, vol. 120, # 27, p. 6761 - 6769.
[3] Justus Liebigs Annalen der Chemie, 1891, vol. 262, p. 365.
[4] Journal fuer Praktische Chemie (Leipzig), 1893, vol. &lt;2&gt; 47, p. 203.
  • 2
  • [ 593-85-1 ]
  • [ 118-92-3 ]
  • [ 20198-19-0 ]
References: [1] Chemische Berichte, 1905, vol. 38, p. 1212[2] Chemische Berichte, 1910, vol. 43, p. 1021.
  • 3
  • [ 1009734-34-2 ]
  • [ 593-85-1 ]
  • [ 1009734-33-1 ]
References: [1] Journal of Medicinal Chemistry, 2008, vol. 51, # 3, p. 449 - 469.
 

Historical Records