*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
2-Methylacetophenone is an endogenous metabolite.
4.5
*For research use only!
Change View
Size | Price | VIP Price | USA Stock *0-1 Day |
Global Stock *5-7 Days |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Dehaloperoxidase Catalyzed Stereoselective Synthesis of Cyclopropanol Esters
Siriboe, Mary G ; Vargas, David A ; Fasan, Rudi JOC,2022,88(12):7630-7640.
Abstract: Chiral cyclopropanols are highly desirable building blocks for medicinal chemistry, but the stereoselective synthesis of these molecules remains challenging. Here, a novel strategy is reported for the diastereo- and enantioselective synthesis of cyclopropanol derivatives via the biocatalytic asymmetric cyclopropanation of vinyl esters with ethyl diazoacetate (EDA). A dehaloperoxidase enzyme from Amphitrite ornata was repurposed to catalyze this challenging cyclopropanation reaction, and its activity and stereoselectivity were optimized via protein engineering. Using this system, a broad range of electron-deficient vinyl esters were efficiently converted to the desired cyclopropanation products with up to 99.5:0.5 diastereomeric and enantiomeric ratios. In addition, the engineered dehaloperoxidase-based biocatalyst is able to catalyze a variety of other abiological carbene transfer reactions, including N?H/S?H carbene insertion with EDA as well as cyclopropanation with diazoacetonitrile, thus adding to the multifunctionality of this enzyme and defining it as a valuable new scaffold for the development of novel carbene transferases.
Show More >
CAS No. : | 577-16-2 |
Formula : | C9H10O |
M.W : | 134.18 |
MDL No. : | MFCD00008734 |
InChI Key : | YXWWHNCQZBVZPV-UHFFFAOYSA-N |
Pubchem ID : | 11340 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H227 |
Precautionary Statements: | P210-P261-P271-P280-P302+P352-P304+P340-P312-P363-P370+P378-P403+P235-P501 |
Num. heavy atoms | 10 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.22 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 41.6 |
TPSA ? Topological Polar Surface Area: Calculated from |
17.07 ?2 |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.87 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.97 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.2 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.1 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.64 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.15 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.29 |
Solubility | 0.687 mg/ml ; 0.00512 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-1.95 |
Solubility | 1.49 mg/ml ; 0.0111 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.09 |
Solubility | 0.11 mg/ml ; 0.000818 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.72 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
2.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.0 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With sodium methylate; In methanol; for 2h;Reflux; | General procedure: Referring to Scheme 1, to the appropriate acetophenone derivative (0.05 mol) and ethyltrifluoroacetate (0.075 mol) in methanol (20 mL), sodium methoxide solution (0.1 mol of Na + 15 mL ofCH3OH) was added dropwise at room temperature, and the mixture was refluxed for 2 h. After themethanol was evaporated under vacuum, the residue was dissolved in ethyl acetate (50 mL), washedwith 5% HCl (25 mL) and water (25 mL), and dried over sodium sulfate. After the solvent wasevaporated under vacuum, the corresponding compound II was obtained. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
91% | With triethylsilane; indium(III) bromide; In chloroform; at 60℃; for 1h;Inert atmosphere; | General procedure: To a freshly distilled CHCl3 solution (0.6 mL) in a screw-capped vial under N2 atmosphere, InBr3 (10.6 mg, 0.0300 mmol), aromatic ketone 4 (0.6 mmol) and Et3SiH (383 muL, 2.40 mmol) was successively added. The resulting mixture was stirred at 60 C (bath temperature) or room temperature, and monitored by TLC or GC analysis until consumption of the starting ketone. The reaction was quenched with H2O. The aqueous layer was extracted with CH2Cl2 (5 mL × 3), the organic phases were dried over anhydrous Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by a silica gel column chromatography (hexane/AcOEt = 19/1) to give the corresponding alkylbenzene 5. 1-Cyano-4-[1-(triethylsiloxy)ethyl]benzene (5k): 85% yield; colorless oil; 1H NMR (500 MHz, CDCl3) delta 0.54-0.62 (m, 6H), 0.90-0.93 (m, 9H), 1.41 (d, 3H, J = 6 Hz), 4.90 (q, 1H, J = 6 Hz), 7.45 (d, 2H, J = 8 Hz), 7.61 (d, 2H, J = 8 Hz); 13C NMR (125 MHz, CDCl3) delta 4.7, 6.7, 27.0, 69.9, 110.5, 119.0, 125.8, 132.0, 152.3; MS (ESI): m/z 284 (M++Na); HRMS (ESI): Calcd for C15H23NNaOSi: 284.1447, Found: 284.1407. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
64% | 1F-a 1-(2-Methylphenyl)-4,4,4-trifluorobutane-1,3-dione This intermediate was prepared from commercially available 2- methylacetophenone. The product obtained was a liquid which was isolated from the reaction mixture by extraction with a suitable solvent like Ethyl acetate. The evaporation of the solvent gave the diketo product in 64% yield which was used as such for the next step. IR (KBr) cm-1 at 1147 (aliphatic C=O), 1199 (CF3), 1458 (C-H) 1608 (aromatic C=O) |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With [bis(acetoxy)iodo]benzene; chloro(5,10,15,20-tetrakis-(10-nitro-1,2,3,4,5,6,7,8-octahydro-1,4;5,8-dimethanoanthracen-9-yl)porphyrin) iron(III); In methanol; dichloromethane; water; for 2h;Inert atmosphere; | General procedure: Iron porphyrin complex 5 (1.2 mg 1 mumol) and imidazole (0.34 mg, 10 mumol) were placed in a test tube under argon. Then, 1 ml of distilled CH2Cl2/MeOH/H2O mixture (0.5:0.4:0.1) was added, followed by ethylbenzene (106 mg, 1 mmol). PhI(OAc)2 (32 mg, 100 mumol) in 0.1 ml CH2Cl2 was added over a period of 1 h with a syringe-pump. After the addition of all the PhI(OAc)2, the reaction mixture was allowed to stir for an additional 1 h. The mixture was analyzed by GC for oxidation yield based on oxidant, 41 %, alcohol/ketone ratio, 83:17, and alcohol enantiomeric excess, 68 % (conditions used: 80 C (1 min), 1 C min-1 80-120 C, 2.5 C min-1 120-180 C). Polarimetric measurement of the oxidation product determined that (R)-(+)-1-phenyl ethanol was formed in excess. The reaction and analysis of the other substrates and catalysts in Table 3 were carried out in an identical manner with that used for ethylbenzene oxidation. Except for indane, the enantiomeric excess was determined by chiral HPLC with a Chiralcel OB-H column: n-hexane/isopropanol 95:5; flow rate: 0.5 ml min-1, detection: 220nm. |
A127576[ 2142-76-9 ]
1-(2,6-Dimethylphenyl)ethanone
Similarity: 1.00
A138909[ 2142-71-4 ]
1-(2,3-Dimethylphenyl)ethanone
Similarity: 1.00
A127576[ 2142-76-9 ]
1-(2,6-Dimethylphenyl)ethanone
Similarity: 1.00
A137984[ 826-73-3 ]
6,7,8,9-Tetrahydro-5H-benzo[7]annulen-5-one
Similarity: 1.00
A138909[ 2142-71-4 ]
1-(2,3-Dimethylphenyl)ethanone
Similarity: 1.00