*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
4.5
*For research use only!
Change View
Size | Price | VIP Price | USA Stock *0-1 Day |
Global Stock *5-7 Days |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Design and synthesis of imidazo[1,2-a]pyridine-chalcone conjugates as antikinetoplastid agents
Agarwal, Devesh S. ; Beteck, Richard M. ; Ilbeigi, Kayhan , et al. Chem. Biol. Drug Des.,2024,103(1):e14400.
Abstract: A library of imidazo[1,2-a]pyridine-appended chalcones were synthesized and characterized using 1H NMR,13C NMR and HRMS. The synthesized analogs were screened for their antikinetoplastid activity against Trypanosoma cruzi, Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense and Leishmania infantum. The analogs were also tested for their cytotoxicity activity against human lung fibroblasts and primary mouse macrophages. Among all screened derivatives, (E)-N-(4-(3-(2-chlorophenyl)acryloyl)phenyl)imidazo[1,2-a]pyridine-2-carboxamide was found to be the most active against T. cruzi and T. b. brucei exhibiting IC50 values of 8.5 and 1.35 μM, resp. Against T. b. rhodesiense, (E)-N-(4-(3-(4-bromophenyl)acryloyl)phenyl)imidazo[1,2-a]pyridine-2-carboxamide was found to be the most active with an IC50 value of 1.13 μM. All synthesized active analogs were found to be non-cytotoxic against MRC-5 and PMM with selectivity indexes of up to more than 50.
Show More >
Keywords: antikinetoplastid ; chalcone ; drug likeliness properties ; imidazo[1,2-a]pyridine ; neglected tropical diseases (NTDs) ; Trypanosoma brucei brucei ; Trypanosoma brucei rhodesiense
Show More >
Are β-Lactones Involved in Carbon-Based Olefination Reactions?
Jan Nowak ; Micha? Tryniszewski ; Micha? Barbasiewicz Synlett,2024,35(10):1190-1194.
Abstract: Heteroatom-based olefinating reagents (e.g., organic phosphonates, sulfonates, etc.) are used to transform carbonyl compounds into alkenes, and their mechanism of action involves aldol-type addition, cyclization, and fragmentation of four-membered ring intermediates. We have developed an analogous process using ethyl 1,1,1,3,3,3-hexafluoroisopropyl methylmalonate, which converts electrophilic aryl aldehydes into α-methylcinnamates in up to 70% yield. The reaction plausibly proceeds through the formation of β-lactone that spontaneously decarboxylates under the reaction conditions. The results shed light on the Knoevenagel–Doebner olefination, for which decarboxylative anti-fragmentation of aldol-type adducts is usually considered.
Show More >
Keywords: olefination ; carbonyl compounds ; reaction mechanism ; lactones ; malonates ; Knoevenagel ; Doebner reaction
Show More >
Jang, Mingyeong ; Lim, Taeho ; Park, Byoung Yong , et al. JOC,2022,87(2):910-919.
Abstract: In this study, we developed a metal-free and highly chemoselective method for the reduction of aromatic nitro compounds. This reduction was performed using tetrahydroxydiboron [B2(OH)4] as the reductant and 4,4'-bipyridine as the organocatalyst and could be completed within 5 min at room temperature. Under optimal conditions, nitroarenes with sensitive functional groups, such as vinyl, ethynyl, carbonyl, and halogen, were converted into the corresponding anilines with excellent selectivity while avoiding the undesirable reduction of the sensitive functional groups.
Show More >
Purchased from AmBeed: 607-35-2 ; 578-66-5 ; 613-50-3 ; 100-19-6 ; 579-71-5 ; 3034-94-4 ; 5683-43-2 ; 99-92-3 ; 13534-97-9 ; 5676-60-8 ; 5470-18-8 ; 619-45-4 ; 553-26-4 ; 580-15-4 ; 611-34-7 ; 619-72-7 ; 100-13-0 ; 540-37-4 ; 1849-25-8 ; 4487-59-6 ; 555-16-8 ; 6298-19-7 ; 556-08-1 ; 953-26-4 ; 54060-30-9 ; 62-23-7 ; 607-34-1 ; 3867-18-3 ; 873-74-5 ; 3544-24-9 ; 94-52-0 ; 1520-21-4 ; 5470-34-8 ; 619-50-1 ; 586-39-0 ; 934-22-5 ; 402-54-0 ; 15411-43-5 ; 455-14-1 ; 17763-80-3 ; 3085-54-9 ; 1942-30-9 ; 1694-20-8 ; 6305-66-4 ; 41656-75-1 ; 6393-17-5 ; 4309-66-4
Show More >
Nitrothiazole-Thiazolidinone Hybrids: Synthesis and in Vitro Antimicrobial Evaluation
Dylan Hart ; Lesetja J. Legoabe ; Omobolanle J. Jesumoroti , et al. Chem. Biodivers.,2022,19(11):e202200729.
Abstract: Herein we report the synthesis of novel compounds inspired by the antimicrobial activities of nitroazole and thiazolidin-4-one based compounds reported in the literature. Target compounds were investigated in?vitro for antitubercular, antibacterial, antifungal, and overt cell toxicity properties. All compounds exhibited potent antitubercular activity. Most compounds exhibited low micromolar activity against S. aureus and C. albicans with no overt cell toxicity against HEK-293 cells nor haemolysis against human red blood cells. Notably, compound 3b exhibited low to sub-micromolar activities against Mtb, MRSA, and C. albicans. 3b showed superior activity (0.25?μg/ml) against MRSA compared to vancomycin (1?μg/ml).
Show More >
CAS No. : | 555-16-8 |
Formula : | C7H5NO3 |
Linear Structure Formula : | C6H4(NO2)(CHO) |
M.W : | 151.12 |
MDL No. : | MFCD00007346 |
InChI Key : | BXRFQSNOROATLV-UHFFFAOYSA-N |
Pubchem ID : | 541 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H317-H319-H412 |
Precautionary Statements: | P501-P273-P264-P280-P337+P313-P305+P351+P338-P302+P352-P332+P313-P362 |
Num. heavy atoms | 11 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 2 |
Num. H-bond acceptors | 3.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 40.65 |
TPSA ? Topological Polar Surface Area: Calculated from |
62.89 ?2 |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
0.99 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.56 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.41 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
0.26 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
-0.18 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
0.81 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.03 |
Solubility | 1.41 mg/ml ; 0.0093 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.49 |
Solubility | 0.488 mg/ml ; 0.00323 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-1.71 |
Solubility | 2.95 mg/ml ; 0.0195 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.11 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
3.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.32 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
90% | With sodium tetrahydroborate; acetic acid In chloroform at 0 - 20℃; for 13 h; | General procedure: AcOH (100percent) (140 mL, 2.44 ml) was added over 1 h to a flask containing stirred NaBH4 (20.0 g, 0.53 ml) and CHCl3 (220 mL) at 0-5 °. The resulting mixture was stirred at 0-5 ° for 1.5 h and 1-methylpiperazine (1) (28.0 ml, 0.25 ml) and a solution of methyl 4-formylbenzoate (2a) (43.4 g, 0.26 ml) in CHCl3 (60 mL) were added. The resulting mixture was stirred at 0-5 ° for 1 h and then for 12 h at rt. the mixture was treated with H2O (150 mL) and Na2CO3 until pH 8.0-9.0. The aqueous phase was extracted with EtOAc (2 .x. 100 ml) then both organic layers were combined, washed with H2O (1 .x. 100 ml), and dried over anhydrous Na2SO4. Filtration and evaporation of the solvents gave methyl 4-[(4-methylpiperazin-1-yl)methyl]benzoate (4a): yellowish oil; yield: 61.6 g, 99percent. |