成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

Home Cart Sign in  
Chemical Structure| 51285-26-8 Chemical Structure| 51285-26-8
Chemical Structure| 51285-26-8

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

{[proInfo.proName]}

CAS No.: 51285-26-8

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support Online Technical Q&A
Product Citations

Product Citations

Zaina Yamba ; Anna Peoble ; Egor M. Novikov ; Raúl Casta?eda ; Tatiana V. Timofeeva ;

Abstract: To increase the number of potential materials for application as MRI contrast agents, several Cu(II) complexes were synthesized. Cu(II) complexes were chosen because they are less expensive in comparison with the presently used Gd(III), Mn(II) and other agents. Pyridine-2-carboximidamide (1), pyrimidine-2-carboximidamide (2) and pyrazole-2-carboximidamide (3) in the form of different salts along with CuCl2 and NaCl or CuBr2 and NaBr were used to obtain four Cu(II) complexes: dichloro-pyrimidine-2-carboximidamide copper(II) (4), dibromo-pyrimidine-2-carboximidamide copper(II) (5), dichloro-pirazole-2-carboximidamide copper(II) (6), and dibromo-pirazole-2-carboximidamide copper(II) (7). X-ray diffraction analysis revealed that molecular complexes 4–7 contain square planar coordinated Cu(II) atoms and their structures are very similar, as well as their packing in crystals, which allows us to consider them isomorphs. The same synthetic approach to complex preparation where NaCl or NaBr was not used brought us to the formation of dimeric complexes μ-chloro{chloro(pyridine-2-carboximidamide)copper(II)} (8) and μ-chloro{chloro(pyrimidine-2-carboximidamide)copper(II)} (9). In the dimeric complexes, two fragments which were the same as in monomeric complexes 4–7 are held together by bridging Cu-Cl bonds making the coordination of Cu equal to 5 (square pyramid). In dimeric complexes, axial Cu-Cl bonds are 2.7360 and 2.854 ?. These values are Cu-Cl bonds on the edge of existence according to statistical data from CSD. Synthesized complexes were characterized by IR spectroscopy, TGA, PXRD, EPR, and quantum chemical calculations. The higher thermal stability of monomer pyrimidine-based complexes with Cl and Br substituents makes them more prospective for further studies.

Keywords: isomorphs ; polymorphs ; Cu(II) complexes ; EPR

Purchased from AmBeed:

Alternative Products

Product Details of [ 51285-26-8 ]

CAS No. :51285-26-8
Formula : C6H8ClN3
M.W : 157.60
SMILES Code : N=C(N)C1=NC=CC=C1.[H]Cl
MDL No. :MFCD00052271
InChI Key :GMHCEDDZKAYPLB-UHFFFAOYSA-N
Pubchem ID :12403615

Safety of [ 51285-26-8 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Calculated chemistry of [ 51285-26-8 ] Show Less

Physicochemical Properties

Num. heavy atoms 10
Num. arom. heavy atoms 6
Fraction Csp3 0.0
Num. rotatable bonds 1
Num. H-bond acceptors 2.0
Num. H-bond donors 2.0
Molar Refractivity 42.47
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

62.76 ?2

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

0.0
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

1.04
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

1.17
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

0.33
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

0.65
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

0.64

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-1.85
Solubility 2.22 mg/ml ; 0.0141 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-1.95
Solubility 1.77 mg/ml ; 0.0113 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-1.71
Solubility 3.07 mg/ml ; 0.0195 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.52 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

2.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.41

Application In Synthesis of [ 51285-26-8 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 51285-26-8 ]

[ 51285-26-8 ] Synthesis Path-Downstream   1~4

  • 1
  • [ 13754-19-3 ]
  • [ 51285-26-8 ]
  • [ 15846-75-0 ]
  • 2
  • [ 24310-36-9 ]
  • [ 51285-26-8 ]
  • 2-(2-Pyridyl)-1,4,5,6-tetrahydro-6-(4-methylbenzenesulfonyl)imidazo[4,5-d][ 1]benzazepine [ No CAS ]
YieldReaction ConditionsOperation in experiment
With hydrogenchloride; sodium hydroxide; bromine; potassium carbonate; In chloroform; Referential Example 1 2-(2-Pyridyl)-1,4,5,6-tetrahydro-6-(4-methylbenzenesulfonyl)imidazo[4,5-d][ 1]benzazepine In 30 mL of chloroform was dissolved 2.0 g of <strong>[24310-36-9]1,2,3,4-tetrahydro-1-(4-methylbenzenesulfonyl)-1-benzazepin-5-one</strong>, to which was then added dropwise a solution of 0.33 mL of bromine in 10 mL of chloroform. The mixture was stirred at room temperature for one hour. The reaction mixture was rinsed with saturated sodium hydrogencarbonate and then dried over anhydrous sodium sulfate. The solvent was distilled off, and the resulting residue was dissolved in 30 mL of chloroform. To the solution were added 5.0 g of 2-amidinopyridinium hydrochloride hydrate and 5.3 g of potassium carbonate, and the mixture was refluxed upon heating for 10 hours. The reaction mixture was cooled, and the solvent was then distilled off. To the resulting residue was added 30 mL of a 1M hydrochloric acid aqueous solution, and a deposited solid was collected by filtration. The resulting solid was suspended in chloroform and rinsed with a 1M sodium hydroxide aqueous solution, and the chloroform layer was dried over anhydrous magnesium sulfate. The solvent was distilled off, and the resulting residue was recrystallized from ethanol to obtain 1.70 g of the titled compound. 1H-NMR (DMSO-d6): delta2.12 (3H, s), 3.00 to 3.33 (4H, br), 7.13 (2H, d, J=8.1 Hz), 7.21 (1H, dt, J=1.4 Hz, 8.1 Hz), 7.29 to 7.43 (5H, m), 7.89 (1H, dt, J=1.4 Hz, 8.1 Hz), 8.07 (1H, d, J=8.1 Hz), 8.17 (1H, d, J=7.3 Hz), 8.60 (1H, d, J=4.4 Hz)
  • 3
  • [ 57611-47-9 ]
  • [ 51285-26-8 ]
  • 6-benzyl-2-pyridin-2-yl-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-4-ol [ No CAS ]
  • 4
  • [ 60838-50-8 ]
  • [ 51285-26-8 ]
  • [ 61310-37-0 ]
YieldReaction ConditionsOperation in experiment
73% A mixture of 157.8 g. (1.0 mol) of 2-pyridinecarboxamidine hydrochloride 23, 54.2 g (1.0 mol) of sodium methoxide in 400 ml of dry methanol was stirred for 30 minutes. The sodium chloride was filtered and the filtrate was concentrated to dryness. The residue and 83 g (1.0 mole) of 3-methoxyacrylonitrile 24 were heated (100-160°) together for 3 hours, at this point the evolution of ethanol had stopped and the melt had started to crystallize. The product 25 was cooled to room temperature, suspended in methanol, filtered and dried to obtain 25 125.6 g, (73percent yield).
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 51285-26-8 ]

Amidines

Chemical Structure| 52313-50-5

A251606 [52313-50-5]

Picolinimidamide

Similarity: 0.98

Chemical Structure| 1179360-90-7

A216067 [1179360-90-7]

4-Methylpicolinimidamide hydrochloride

Similarity: 0.96

Chemical Structure| 125903-77-7

A444609 [125903-77-7]

3-Methylpicolinimidamide hydrochloride

Similarity: 0.88

Chemical Structure| 1179362-50-5

A170040 [1179362-50-5]

5-Phenylpicolinimidamide hydrochloride

Similarity: 0.87

Chemical Structure| 949010-62-2

A352674 [949010-62-2]

4-(tert-Butyl)picolinimidamide hydrochloride

Similarity: 0.87

Amines

Chemical Structure| 52313-50-5

A251606 [52313-50-5]

Picolinimidamide

Similarity: 0.98

Chemical Structure| 1179360-90-7

A216067 [1179360-90-7]

4-Methylpicolinimidamide hydrochloride

Similarity: 0.96

Chemical Structure| 125903-77-7

A444609 [125903-77-7]

3-Methylpicolinimidamide hydrochloride

Similarity: 0.88

Chemical Structure| 1179362-50-5

A170040 [1179362-50-5]

5-Phenylpicolinimidamide hydrochloride

Similarity: 0.87

Chemical Structure| 949010-62-2

A352674 [949010-62-2]

4-(tert-Butyl)picolinimidamide hydrochloride

Similarity: 0.87

Related Parent Nucleus of
[ 51285-26-8 ]

Pyridines

Chemical Structure| 52313-50-5

A251606 [52313-50-5]

Picolinimidamide

Similarity: 0.98

Chemical Structure| 1179360-90-7

A216067 [1179360-90-7]

4-Methylpicolinimidamide hydrochloride

Similarity: 0.96

Chemical Structure| 125903-77-7

A444609 [125903-77-7]

3-Methylpicolinimidamide hydrochloride

Similarity: 0.88

Chemical Structure| 1179362-50-5

A170040 [1179362-50-5]

5-Phenylpicolinimidamide hydrochloride

Similarity: 0.87

Chemical Structure| 949010-62-2

A352674 [949010-62-2]

4-(tert-Butyl)picolinimidamide hydrochloride

Similarity: 0.87