成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

Home Cart Sign in  
Chemical Structure| 3978-81-2 Chemical Structure| 3978-81-2

Structure of 3978-81-2

Chemical Structure| 3978-81-2

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

{[proInfo.proName]}

CAS No.: 3978-81-2

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations

Ravinder Kaur ; Niharika Dalpati ; Jared H. Delcamp ; Byron H. Farnum ;

Abstract: Dye-sensitized solar cells (DSCs) are important to indoor solar powered devices and energy sustainable buildings because of their remarkable performance under indoor/ambient light conditions. Triiodide/iodide (I3–/I–) has been used as the most common redox mediator in DSCs because of its desirable kinetic properties and multielectron redox cycle. However, the low redox potential, corrosiveness, competitive visible light absorption, and lack of tunability of this redox mediator limit its performance in many DSC devices. Here we report a class of complex redox shuttles which operate on a similar multielectron redox cycle as I3–/I– while maintaining desirable kinetics and improving on its limitations. These complexes, dithiocarbamates, were evaluated as redox shuttles in DSCs, which exhibited excellent performance under low light conditions. The recombination behavior of the redox shuttles with electrons in TiO2, dye regeneration behavior, and counter electrode electron transfer resistance were studied via chronoamperometry and electrochemical impedance spectroscopy (EIS). Further, DSC devices were studied with the Ni-based redox shuttles via incident photon-to-current conversion efficiencies (IPCEs) and current–voltage (J–V) curves under varied light intensities. The Ni-based redox shuttles showed up to 20.4% power conversion efficiency under fluorescent illumination, which was higher than I3–/I–-based devices (13%) at similar electrolyte concentrations. Taken together, these results show that dithiocarbamate redox shuttles have faster rates of dye regeneration than the I3–/I– shuttle but suffer from faster recombination of photoinjected electrons with oxidized Ni(IV) species, which decrease photovoltages.

Keywords: dye-sensitized solar cells ; nickel(IV) ; redox shuttle ; dithiocarbamate ; indoor photovoltaic

Purchased from AmBeed: ;

Alternative Products

Product Details of [ 3978-81-2 ]

CAS No. :3978-81-2
Formula : C9H13N
M.W : 135.21
SMILES Code : CC(C)(C)C1=CC=NC=C1
MDL No. :MFCD00006435
InChI Key :YSHMQTRICHYLGF-UHFFFAOYSA-N
Pubchem ID :19878

Safety of [ 3978-81-2 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 3978-81-2 ] Show Less

Physicochemical Properties

Num. heavy atoms 10
Num. arom. heavy atoms 6
Fraction Csp3 0.44
Num. rotatable bonds 1
Num. H-bond acceptors 1.0
Num. H-bond donors 0.0
Molar Refractivity 43.51
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

12.89 ?2

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

2.02
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

2.53
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

2.38
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

1.8
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

2.46
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

2.24

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-2.65
Solubility 0.303 mg/ml ; 0.00224 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-2.45
Solubility 0.483 mg/ml ; 0.00357 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-3.2
Solubility 0.0847 mg/ml ; 0.000627 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-5.33 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

2.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.0

Application In Synthesis of [ 3978-81-2 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 3978-81-2 ]
  • Downstream synthetic route of [ 3978-81-2 ]

[ 3978-81-2 ] Synthesis Path-Upstream   1~1

  • 1
  • [ 3978-81-2 ]
  • [ 207739-72-8 ]
References: [1] Chemistry - A European Journal, 2018, vol. 24, # 39, p. 9910 - 9918.
 

Historical Records

Technical Information

Categories

Related Parent Nucleus of
[ 3978-81-2 ]

Pyridines

Chemical Structure| 553-26-4

A157160 [553-26-4]

4,4'-Bipyridine

Similarity: 0.86

Chemical Structure| 1815-99-2

A175214 [1815-99-2]

4-Decylpyridine

Similarity: 0.86

Chemical Structure| 27876-24-0

A191188 [27876-24-0]

4-Hexylpyridine

Similarity: 0.86

Chemical Structure| 5335-75-1

A310726 [5335-75-1]

4-Butylpyridine

Similarity: 0.86

Chemical Structure| 4916-57-8

A697029 [4916-57-8]

1,2-Di(pyridin-4-yl)ethane

Similarity: 0.86