Purity | Size | Price | VIP Price | USA Stock *0-1 Day | Global Stock *5-7 Days | Quantity | |||||||
{[ item.p_purity ]} | {[ item.pr_size ]} | Login | Inquiry |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price) ]} |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} | Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price) ]} | {[ item.pr_usastock ]} | in stock Inquiry - | {[ item.pr_chinastock ]} | {[ item.pr_remark ]} in stock Inquiry - | Login | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
Transition-Metal-Free Borylation of Aryl Bromide Using a Simple Diboron Source
Lim, Taeho ; Ryoo, Jeong Yup ; Han, Min Su JOC,2020,85(16):10966-10972. DOI: 10.1021/acs.joc.0c01065 PubMed ID: 32806093
More
Abstract: In this study, we developed a simple transition-metal-free borylation reaction of aryl bromides. Bis-boronic acid (BBA), was used, and the borylation reaction was performed using a simple procedure at a mild temperature. Under mild conditions, aryl bromides were converted to arylboronic acids directly without any deprotection steps and purified by conversion to trifluoroborate salts. The functional group tolerance was considerably high. The mechanism study suggested that this borylation reaction proceeds via a radical pathway.
Purchased from AmBeed: 20469-65-2 ; 13675-18-8 ; 2564-83-2 ; 872-31-1 ; 192863-35-7 ; 871231-46-8 ; 192863-36-8 ; 6793-92-6 ; 3972-65-4 ; 2398-37-0 ; 850623-47-1 ; 705254-31-5 ; 580-13-2 ; 2635-13-4 ; 623-12-1 ; 1015082-71-9 ; 52415-29-9 ; 23145-07-5 ; 619-42-1 ; 99-90-1 ; 192863-37-9 ; 578-57-4 ; 407-14-7 ; 216434-82-1 ; 668984-08-5 ; 423118-47-2 ; 108-85-0 ; 252726-24-2 ; 101-55-3 ; 850623-36-8 ; 4923-87-9 ; 1394827-04-3 ; 850623-42-6 ; 438553-44-7 ; 460-00-4 ; 1187951-62-7 ; 705254-34-8 ; 111-83-1 ; 929626-22-2 ; 111-83-1 ; 906007-40-7 ; 1443282-44-7 ; 1000160-76-8 ; 1111733-01-7 ; 99-90-1 ...More
CAS No. : | 3972-65-4 | MDL No. : | MFCD00000108 |
Formula : | C10H13Br | Boiling Point : | - |
Linear Structure Formula : | C6H4BrC(CH3)3 | InChI Key : | XHCAGOVGSDHHNP-UHFFFAOYSA-N |
M.W : | 213.11 | Pubchem ID : | 77595 |
Synonyms : |
|
Chemical Name : | 1-Bromo-4-(tert-butyl)benzene |
Signal Word: | Warning | Class: | N/A |
Precautionary Statements: | P261-P305+P351+P338 | UN#: | N/A |
Hazard Statements: | H315-H319-H335 | Packing Group: | N/A |
GHS Pictogram: |
![]() |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
83% | With bis-triphenylphosphine-palladium(II) chloride; 1,1',1"-[benzene-1,3,5-triyltris(methylene)]tris[(octyl)-4-pyridin-4-ylpyridinium] hexafluorophosphate; tetrabutylammonium bis[(trifluoromethane)sulfonyl]imide; In N,N-dimethyl-formamide; at 60℃;Electrochemical reaction; | General procedure: In an undivided cellequipped with a Zn sacrificial anode (1.5 x 1.0 cm2) and a Pt cathode (1.5 x 1.0 cm2) was placed a DMF(3 mL) solution of 4-bromopropiophenone (4a, 0.053 g, 0.25 mmol), 1 (0.14 g, 7.6 x 10-2 mmol),[Bu4N+][Tf2N-] (0.16 g, 0.30 mmol), and a catalytic amount of PdCl2(PPh3)2 (0.0086 g, 1.2 x 10-2 mmol).The solution was electrolyzed under constant current conditions (10 mA) at 60 C until 2 F/mol-4a ofelectricity was passed. The reaction mixture was poured into 5% aq. HCl (12 mL). The mixture wasextracted with AcOEt (10 mL x 3). The combined organic layer was washed successively with waterand brine, dried (Na2SO4), and concentrated under reduced pressure. The residue was purified bycolumn chromatography (SiO2, toluene/AcOEt = 10/1) to afford 4,4?-dipropanoylbiphenyl (5a, 0.030 g,0.11 mmol, 89%). |
68% | With bis-triphenylphosphine-palladium(II) chloride; 1,1'-dioctyl-4,4'-bipyridinium bis(trifluimide); tetrabutylammonium bis[(trifluoromethane)sulfonyl]imide; In 1-methyl-pyrrolidin-2-one; at 60℃;Electrochemical reaction; | A typical procedure of the electroreductive coupling of aryl bromide1 with catalytic amounts of [OctV2+][Tf2N]2 and Pd species isas follows. Into an undivided cell fitted with a Zn anode(1.5 1 cm2) and a Pt cathode (1.5 1 cm2) was added a DMF(3 mL) solution of 4-bromopropiophenone (1a, 0.25 mmol),[Bu4N+][Tf2N] (0.3 mmol), [OctV2+][Tf2N]2 (0.075 mmol,30 mol %), and PdCl2(PPh3)2 (0.0125 mmol, 5 mol %). The wholemixture was electrolyzed at 60 C under constant current(10 mA) conditions until 2 F/mol-1a of electricity was passed.The reaction mixture was poured into 5% aq HCl and extractedwith AcOEt. Purification by column chromatography (SiO2, toluene/AcOEt = 10/1) afforded 4,40-dipropanoylbiphenyl (2a) in 94%yield |
64% | With palladium diacetate; bis(tri-n-butyltin); cesium fluoride; tricyclohexylphosphine; In neat (no solvent); at 110℃; for 24h; | A screw-cap vial equipped with a magnetic stir bar was charged with aryl halide (1 mmol), hexa-n-butylditin (0.5 mmol),palladium acetate (0.01 mmol) and tricyclohexylphosphine (0.02 mmol),followed by anhydrous cesium fluoride (1.5 mmol). The resulting mixture was manually homogenized with a magnet. A vial was transferred to a preheated oil bath (110 C). After 24 h, the mixture was cooled, dissolved in CH2Cl2-H2O mixture (1:1), the organic phase was separated, the solvent was evaporated in vacuo and the product was isolated by flash chromatography on a silica gel by elution with hexane-CH2Cl2 mixture. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
tris-(dibenzylideneacetone)dipalladium(0); In tetrahydrofuran; 1,2-dimethoxyethane; | EXAMPLE 27 Synthesis of 4-t-butylbiphenyl using K3PO4 as Base with 0.1 mol percent Pd An oven dried resealable Schlenk tube was evacuated and backfilled with argon and charged with phenylboron dihydroxide (183 mg, 1.5 mmol), and potassium phosphate (425 mg, 2.0 mmol). The tube was evacuated and backfilled with argon, and DME (1.5 mL) and 1-bromo-4-t-butylbenzene (0.17 mL, 1.0 mmol) were added through a rubber septum. A separate flask was charged with Pd2(dba)3 (4.6 mg, 0.005 mmol), 2-(di-tert-butylphosphino)biphenyl (4.5 mmol, 0.015 mmol), and DME (1 mL). The mixture was stirred for 1 minute at room temperature, then 100 muL of this solution (0.1 mol percent Pd, 0.15 mol percent 2-(di-tert-butylphosphino)biphenyl) was added to the Schlenk tube followed by additional THF (1.5 mL). The septum was removed, the tube was sealed with a teflon screw cap and the mixture was stirred at room temperature for 2 minutes, then heated to 80° C. with stirring until the starting aryl bromide had been completely consumed as judged by GC analysis. The reaction mixture was then diluted with ether (20 mL) and poured into a separatory funnel. The mixture was washed with 1M NaOH (20 mL), and the layers were separated. The aqueous layer was extracted with ether (20 mL), and the combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo. The crude material was then purified by flash chromatography on silica gel to give 199 mg 95percent) of a glassy solid. | |
199 mg (95%) | tris-(dibenzylideneacetone)dipalladium(0); In tetrahydrofuran; 1,2-dimethoxyethane; | Example 27 Synthesis of 4-t-butylbiphenyl using K3PO4 as base with 0.1 mol percent Pd An oven dried resealable Schlenk tube was evacuated and backfilled with argon and charged with phenylboron dihydroxide (183 mg, 1.5 mmol), and potassium phosphate (425 mg, 2.0 mmol). The tube was evacuated and backfilled with argon, and DME (1.5 mL) and 1-bromo-4-t-butylbenzene (0.17 mL, 1.0 mmol) were added through a rubber septum. A separate flask was charged with Pd2(dba)3 (4.6 mg, 0.005 mmol), 2-(di-tert-butylphosphino)biphenyl (4.5 mmol, 0.015 mmol), and DME (1 mL). The mixture was stirred for 1 minute at room temperature, then 100 muL of this solution (0.1 mol percent Pd, 0.15 mol percent 2-(di-tert-butylphosphino)biphenyl) was added to the Schlenk tube followed by additional THF (1.5 mL). The septum was removed, the tube was sealed with a teflon screw cap and the mixture was stirred at room temperature for 2 minutes, then heated to 80° C. with stirring until the starting aryl bromide had been completely consumed as judged by GC analysis. The reaction mixture was then diluted with ether (20 mL) and poured into a separatory funnel. The mixture was washed with 1M NaOH (20 mL), and the layers were separated. The aqueous layer was extracted with ether (20 mL), and the combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo. The crude material was then purified by flash chromatography on silica gel to give 199 mg (95percent) of a glassy solid. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
202 mg (96%) | With cesium fluoride;tris-(dibenzylideneacetone)dipalladium(0); In tetrahydrofuran; | EXAMPLE 28 Synthesis of 4-t-butylbiphenyl using CsF as Base with 0.05 mol percent Pd An oven dried resealable Schlenk tube was evacuated and backfilled with argon and charged with phenylboron dihydroxide (183 mg, 1.5 mmol), and cesium fluoride (456 mg, 3.0 mmol). The tube was evacuated and backfilled with argon, and THF (1.5 mL) and 1-bromo-4-t-butylbenzene (0.17 mL, 1.0 mmol) were added through a rubber septum. A separate flask was charged with Pd2(dba)3 (4.6 mg, 0.005 mmol), 2-(di-tert-butylphosphino)biphenyl (4.5 mmol, 0.015 mmol), and THF (1 mL). The mixture was stirred for 1 minute at room temperature, then 50 muL of this solution (0.05 mol percent Pd, 0.075 mol percent 2-(di-tert-butylphosphino)biphenyl) was added to the Schlenk tube followed by additional THF (1.5 mL). The septum was removed, the tube was sealed with a teflon screw cap and the mixture was stirred at room temperature for 2 minutes, then heated to 80° C. with stirring until the starting aryl bromide had been completely consumed as judged by GC analysis. The reaction mixture was then diluted with ether (20 mL) and poured into a separatory funnel. The mixture was washed with 1M NaOH (20 mL), and the layers were separated. The aqueous layer was extracted with ether (20 mL), and the combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo. The crude material was then purified by flash chromatography on silica gel to give 202 mg (96percent) of a glassy solid. |
202 mg (96%) | With cesium fluoride;tris-(dibenzylideneacetone)dipalladium(0); In tetrahydrofuran; | Example 28 Synthesis of 4-t-butylbiphenyl using CsF as base with 0.05 mol percent Pd An oven dried resealable Schlenk tube was evacuated and backfilled with argon and charged with phenylboron dihydroxide (183 mg, 1.5 mmol), and cesium fluoride (456 mg, 3.0 mmol). The tube was evacuated and backfilled with argon, and THF (1.5 mL) and 1-bromo-4-t-butylbenzene (0.17 mL, 1.0 mmol) were added through a rubber septum. A separate flask was charged with Pd2(dba)3 (4.6 mg, 0.005 mmol), 2-(di-tert-butylphosphino)biphenyl (4.5 mmol, 0.015 mmol), and THF (1 mL). The mixture was stirred for 1 minute at room temperature, then 50 muL of this solution (0.05 mol percent Pd, 0.075 mol percent 2-(di-tert-butylphosphino)biphenyl) was added to the Schlenk tube followed by additional THF (1.5 mL). The septum was removed, the tube was sealed with a teflon screw cap and the mixture was stirred at room temperature for 2 minutes, then heated to 80° C. with stirring until the starting aryl bromide had been completely consumed as judged by GC analysis. The reaction mixture was then diluted with ether (20 mL) and poured into a separatory funnel. The mixture was washed with 1M NaOH (20 mL), and the layers were separated. The aqueous layer was extracted with ether (20 mL), and the combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo. The crude material was then purified by flash chromatography on silica gel to give 202 mg (96percent) of a glassy solid. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With nitrogen; sodium t-butanolate; In toluene; | Example 5 Preparation of N-(4-tert-butylphenyl)-<strong>[42933-43-7]2,3-dihydro-1-benzofuran-5-amine</strong> To a flask equipped with a magnetic stirrer, reflux condensor, and nitrogen inlet was added <strong>[42933-43-7]2,3-dihydro-1-benzofuran-5-amine</strong> (11.6 grams, 85.8 mmoles, prepared as in Example 23 of U.S. Pat. No. 20040029932), 4-tert-butyl bromobenzene (18.1 grams, 85 mmoles), tris(dibenzylideneacetone)dipalladium (0) (1.6 grams, 1.7 mmoles), rac-2,2'-bis(diphenylphosphino)-1,1'-binapthyl (2.1 grams, 3.4 mmoles), sodium tert-butoxide (16.4 grams, 0.17 moles) and anhydrous toluene (100 mL). The contents of the flask were refluxed for three days; cooled to room temperature; and filtered through a pad of silica gel. The silica gel pad was then eluted with dichloromethane (150 mL). The combined organic layers were concentrated in vacuo to yield a dark solid. The solid was chromatographed on silica gel, eluding with hexane/ethyl acetate (20:1) to afford 10 grams of the desired product as a white solid. 1H NMR (CDCl3) delta 7.25 (d, 2H), 6.95 (s, 1H), 6.85 (d, 3H), 6.7 (d, 1H), 5.4 (bs, 1H), 4.5 (t, 2H), 3.15 (t, 2H), 1.3 (s, 9H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With sodium t-butanolate;tris-(dibenzylideneacetone)dipalladium(0); 2,2'-bis-(diphenylphosphino)-1,1'-binaphthyl; In toluene; for 72h;Heating / reflux; | Example 5; Preparation of N-(4-tert-butylphenyl)-<strong>[42933-43-7]2,3-dihydro-1-benzofuran-5-amine</strong>; [Show Image] To a flask equipped with a magnetic stirrer, reflux condensor, and nitrogen inlet was added <strong>[42933-43-7]2,3-dihydro-1-benzofuran-5-amine</strong> (11.6 grams, 85.8 mmoles, prepared as in Example 23 of U.S. Pat. No. 20040029932), 4-tert-butyl bromobenzene (18.1 grams, 85 mmoles), tris(dibenzylideneacetone)dipalladium (0) (1.6 grams, 1.7 mmoles), rac-2,2'-bis(diphenylphosphino)-1,1'-binapthyl (2.1 grams, 3.4 mmoles), sodium tert-butoxide (16.4 grams, 0.17 moles) and anhydrous toluene (100 mL). The contents of the flask were refluxed for three days; cooled to room temperature; and filtered through a pad of silica gel. The silica gel pad was then eluted with dichloromethane (150 mL). The combined organic layers were concentrated in vacuo to yield a dark solid. The solid was chromatographed on silica gel, eluting with hexane/ethyl acetate (20:1) to afford 10 grams of the desired product as a white solid. 1H NMR (CDCl3) delta 7.25 (d, 2H), 6.95 (s, 1H), 6.85 (d, 3H), 6.7 (d, 1H), 5.4 (bs, 1H), 4.5 (t, 2H), 3.15 (t, 2H), 1.3 (s, 9H). | |
With sodium t-butanolate;tris-(dibenzylideneacetone)dipalladium(0); 2,2'-bis-(diphenylphosphino)-1,1'-binaphthyl; In toluene; for 72h;Heating / reflux; | To a flask equipped with a magnetic stirrer, reflux condensor, and nitrogen inlet was added <strong>[42933-43-7]2,3-dihydro-1-benzofuran-5-amine</strong> (11.6 grams, 85.8 mmoles, prepared as in Example 23 of U.S. Pat. No. 20040029932), 4-tert-butyl bromobenzene (18.1 grams, 85 mmoles), tris(dibenzylideneacetone)dipalladium (0) (1.6 grams, 1.7 mmoles), rac-2,2'-bis(diphenylphosphino)-1,1'-binapthyl (2.1 grams, 3.4 mmoles), sodium tert-butoxide (16.4 grams, 0.17 moles) and anhydrous toluene (100 mL). The contents of the flask were refluxed for three days; cooled to room temperature; and filtered through a pad of silica gel. The silica gel pad was then eluted with dichloromethane (150 mL). The combined organic layers were concentrated in vacuo to yield a dark solid. The solid was chromatographed on silica gel, eluting with hexane/ethyl acetate (20:1) to afford 10 grams of the desired product as a white solid. 1H NMR (CDCl3) delta 7.25 (d, 2H), 6.95 (s, 1H), 6.85 (d, 3H), 6.7 (d, 1H), 5.4 (bs, 1H), 4.5 (t, 2H), 3.15 (t, 2H), 1.3 (s, 9H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
96% | With C21H19N2(1+)*Br(1-); palladium diacetate; potassium carbonate; In toluene; at 70℃; for 3h; | General procedure: A reaction tube was charged with Pd(OAc)2 (1.34 mg, 0.006 mmol), imidazolium salt (0.0072 mmol), K2CO3 (62 mg, 0.45 mmol), and ArB(OH)2 (0.45 mmol). To the reaction tube were added toluene (2.0 mL) and aryl bromide (0.3 mmol). The mixture was stirred at 70 °C in the presence of air for 3 hours. The mixture was cooled to room temperature and directly purified through silica gel column chromatography to give the product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
2.47 g | With copper(l) iodide; caesium carbonate; N,N`-dimethylethylenediamine; In N,N-dimethyl-formamide; at 110℃; for 12h; | To a solution of <strong>[5932-27-4]ethyl 1H-pyrazole-3-carboxylate</strong> (2.39 g) in N, N-dimethylformamide (24 mL) was added 1-bromo-4-tert-butylbenzene (4.40 mL), N, N ' -Dimethyl ethylenediamine (0.918 mL), copper iodide (I) (3.25 g) and cesium carbonate (11.1 g) were added and stirred at 110 ° C. (oil bath temperature) for 12 hours. After filtering the reaction solution with Celite (registered trademark), water was added to the filtrate, and the mixture was extracted three times with ethyl acetate. The combined organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel cartridge, hexane: ethyl acetate = 90: 10 to 80:20) to give the title compound (2.47 g) as a pale yellow oil. |
[ 22385-77-9 ]
1-Bromo-3,5-di-tert-butylbenzene
Similarity: 0.97
[ 6683-75-6 ]
1,2-Dibromo-4-tert-butylbenzene
Similarity: 0.94
[ 22385-77-9 ]
1-Bromo-3,5-di-tert-butylbenzene
Similarity: 0.97
[ 6683-75-6 ]
1,2-Dibromo-4-tert-butylbenzene
Similarity: 0.94