Purity | Size | Price | VIP Price | USA Stock *0-1 Day | Global Stock *5-7 Days | Quantity | ||||||
{[ item.p_purity ]} | {[ item.pr_size ]} | Inquiry |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price) ]} |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} | Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price) ]} | {[ item.pr_usastock ]} | in stock Inquiry - | {[ item.pr_chinastock ]} | {[ item.pr_remark ]} in stock Inquiry - | Login | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
CAS No. : | 38585-74-9 | MDL No. : | MFCD04115732 |
Formula : | C4H5NOS | Boiling Point : | - |
Linear Structure Formula : | - | InChI Key : | WKBQQWDVVHGWDB-UHFFFAOYSA-N |
M.W : | 115.15 | Pubchem ID : | 2763216 |
Synonyms : |
|
Chemical Name : | Thiazol-5-ylmethanol |
Signal Word: | Danger | Class: | N/A |
Precautionary Statements: | P501-P273-P280-P305+P351+P338+P310 | UN#: | N/A |
Hazard Statements: | H318-H412 | Packing Group: | N/A |
GHS Pictogram: |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
75% | With sodium hydroxide In tetrahydrofuran; methanol; chloroform; water; ethyl acetate | C. 5-(Hydroxymethyl)thiazole To a precooled (ice bath) three neck 500 mL flask containing lithium aluminum hydride (2.89 g, 76 mmol) in 250 mL of THF was added ethyl thiazole-5-carboxylate (11.82 g, 75.68 mmol) in 100 mL of THF dropwise over 1.5 hours to avoid excess foaming. The reaction was stirred for an additional hour, and treated cautiously with 2.9 mL of water, 2.9 mL of 15percent NaOH, and 8.7 mL of water. The solid salts were filtered, and the filtrate set aside. The crude salts were heated at reflux in 100 mL of ethyl acetate for 30 minutes. The resulting mixture was filtered, and the two filtrates were combined, dried over Na2 SO4, and concentrated in vacuo. The product was purified by silica gel chromatography eluding sequentially with 0percent -2percent -4percent methanol in chloroform, to provide the desired compound, Rf-0.3 (4percent methanol in chloroform), which solidified upon standing in 75percent yield. NMR (CDCl3) δ4.92 (s, 2H), 7.78 (s, 1H), 8.77 (s, 1H). Mass spectrum: (M+H)+ =116. |
75% | With sodium hydroxide In tetrahydrofuran; methanol; chloroform; water; ethyl acetate | P. 5-(Hydroxymethyl)thiazole To a precooled (ice bath) three neck 500 mL flask containing lithium aluminum hydride (76 mmol) in 250 mL of THF was added ethyl thiazole-5-carboxylate (11.82 g, 75.68 mmol) in 100 mL of THF dropwise over 1.5 hours to avoid excess foaming. The reaction was stirred for an additional hour, and treated cautiously with 2.9 mL of water, 2.9 mL of 15percent NaOH, and 8.7 mL of water. The solid salts were filtered, and the flitrate set aside. The crude salts were heated at reflux in 100 mL of ethyl acetate for 30 min. The resulting mixture was filtered, and the two filtrates were combined, dried over Na2 SO4, and concentrated in vacuo. The product was purified by silica gel chromatography eluding sequentially with 0percent -2percent-4percent methanol in chloroform, to provide the desired compound, Rf=0.3 (4percent methanol in chloroform), which solidified upon standing in 75percent yield. NMR (CDCl3)δ4.92 (s, 2H), 7.78 (s, 1H), 8.77 (s, 1H). Mass spectrum: (M+H)+ =116. |
75% | With sodium hydroxide In tetrahydrofuran; methanol; chloroform; water; ethyl acetate | K. 5-(Hydroxymethyl)thiazole To a precooled (ice bath) three neck 500 mL flask containing lithium aluminum hydride (76 mmol) in 250 mL of THF was added ethyl thiazole-5-carboxylate (11.82 g, 75.68 mmol) in 100 mL of THF dropwise over 1.5 hours to avoid excess foaming. The reaction was stirred for an additional hour, and treated cautiously with 2.9 mL of water, 2.9 mL of 15percent NaOH, and 8.7 mL of water. The solid salts were filtered, and the filtrate set aside. The crude salts were heated at reflux in 100 mL of ethyl acetate for 30 min. The resulting mixture was filtered, and the two filtrates were combined, dried over Na2 SO4, and concentrated in vacuo. The product was purified by silica gel chromatography eluding sequentially with 0percent - 2percent - 4percent methanol in chloroform, to provide the desired compound, Rf=0.3 (4percent methanol in chloroform), which solidified upon standing in 75percent yield. NMR (CDCl3) δ4.92 (s, 2H), 7.78 (s, 1 H), 8.77 (s, 1H). Mass spectrum: (M+H)+ =116. |
75% | With sodium hydroxide In tetrahydrofuran; methanol; chloroform; water; ethyl acetate | K. 5-(Hydroxymethyl)thiazole. To a precooled (ice bath) three neck 500 mL flask containing lithium aluminum hydride (76 mmol) in 250 mL of THF was added ethyl thiazole-5-carboxylate (11.82 g, 75.68 mmol) in 100 mL of THF dropwise over 1.5 hours to avoid excess foaming. The reaction was stirred for an additional hour, and treated cautiously with 2.9 mL of water, 2.9 mL of 15percent NaOH, and 8.7 mL of water. The solid salts were filtered, and the filtrate set aside. The crude salts were heated at reflux in 100 mL of ethyl acetate for 30 min. The resulting mixture was filtered, and the two filtrates were combined, dried over Na2 SO4, and concentrated in vacuo. The product was purified by silica gel chromatography eluding sequentially with 0percent-2percent-4percent methanol in chloroform, to provide the desired compound, Rf=0.3 (4percent methanol in chloroform), which solidified upon standing in 75percent yield. NMR (CDCl3) δ4.92 (s, 2H), 7.78 (s, 1H), 8.77 (s, 1H). Mass spectrum: (M+H)+ =116. |
75% | With sodium hydroxide In tetrahydrofuran; methanol; chloroform; water; ethyl acetate | D. 5-(Hydroxymethyl)thiazole To a precooled (ice bath) three neck 500 mL flask containing lithium aluminum hydride (76 mmol) in 250 mL of THF was added ethyl thiazole-5-carboxylate (11.82 g, 75.68 mmol)in 100 mL of THF dropwise over 1.5 hours to avoid excess foaming. The reaction was stirred for an additional hour, and treated cautiously with 2.9 mL of water, 2.9 mL of 15percent NaOH, and 8.7 mL of water. The solid salts were filtered, and the filtrate set aside. The crude salts were heated at reflux in 100 mL of ethyl acetate for 30 min. The resulting mixture was filtered, and the two flitrates were combined, dried over Na2 SO4, and concentrated in vacuo. The product was purified by silica gel chromatography eluding sequentially with 0percent-2percent-4percent methanol in chloroform, to provide the desired compound, Rf=0.3 (4percent methanol in chloroform), which solidified upon standing in 75percent yield. NMR (CDCl3) δ4.92 (s, 2 H), 7.78 (s, 1 H), 8.77 (s, 1 H). Mass spectrum: (M+H)+ =116. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
69% | Stage #1: With lithium aluminium tetrahydride In tetrahydrofuran; diethyl ether at 0℃; for 1 h; Stage #2: With sodium hydroxide In water at 0℃; for 0.5 h; |
A mixture of 0. 54 g of g-4 and 10ml tetrahydrofurane (THF) was stirred at 0°C under a nitrogen atmosphere. The mixture of 0. 16g of lithium aluminium hydride and 5ml of ether was added drop wise. After lhour at 0°C water and 20percent sodium hydroxide were added, and stirred during 30 minutes. The mixture was filtered over decalite and the solvent was removed by azeotropique distillation with toluene yielding 0.3g (69percent) of thiazol-5-yl-methanol (g-5). |
[ 131748-97-5 ]
(2-(Trifluoromethyl)thiazol-5-yl)methanol
Similarity: 0.69