成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

Home Cart Sign in  
Chemical Structure| 3430-16-8 Chemical Structure| 3430-16-8

Structure of 3430-16-8

Chemical Structure| 3430-16-8

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

{[proInfo.proName]}

CAS No.: 3430-16-8

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations

Jan Petrov?i? ;

Abstract: Piperidine is the most frequently encountered aliphatic heterocycle in medicinal chemistry. Despite its prevalence, there is a constant demand for improvement of ADME (absorption, distribution, metabolism, excretion) properties of piperidine-containing drugs and drug candidates. 2-azabicyclo[2.2.0]hexanes present an exciting class of more rigid and structurally programmable piperidine isosteres. EVA (exit vector analysis) of the most frequently employed piperidine isosteres and 2-azabicyclo[2.2.0]hexanes is presented, and a side-by-side comparison is made. This dissertation describes our endeavors towards the expansion of accessible 2-azabicyclo[2.2.0]hex-5-ene chemical space, our exploration of 2-azabicyclo[2.2.0]hex-5-ene scaffold reactivity in olefin functionalization reactions and installation of synthetically useful handles. The malleability and practicality of 2-azabicyclo[2.2.0]hexane core is demonstrated by preparation of several isosteres of piperidine-containing drugs and lead compounds. A general blueprint for functionalized 2-azabicyclo[2.2.0]hexanes is devised. Special attention is devoted to “pseudoaxial” C5-substituted-2-azabicyclo[2.2.0]hexanes, which could serve as isosteres of piperidines in their thermodynamically unfavorable axial conformations without the need to introduce additional carbon atoms. La piperidina è l’eterociclo alifatico più frequente nella chimica farmaceutica (medicinal chemistry). Nonostante la sua prevalenza, c’è una costante domanda for il miglioramento delle proprietà ADME (assorbimento, distribuzione, metabolismo, escrezione) di farmaci e candidati farmaci contenenti strutture piperidiniche. Gli 2-azabiciclo[2.2.0]esani rappresentano un’interessante classe di isosteri della piperidina più rigidi e programmabili strutturalmente. L’EVA (exit vector analysis, analisi di vettore di uscita) degli isosteri della piperidina più frequentemente utilizzati e di 2-azabiciclo[2.2.0]esani viene mostrata, ed è stata eseguita una comparazione tra loro. Questa tesi descrive i nostri sforzi verso l’espansione di spazio chimico accessibile dei 2-azabiciclo[2.2.0]es-2-eni, la nostra esplorazione della reattività della struttura di tipo 2-azabiciclo[2.2.0]es-2-ene nelle reazioni di funzionalizzazione delle olefine e l’installazione di appigli sinteticamente utili. La malleabilità e praticabilità del nucleo di tipo 2-azabiciclo[2.2.0]es-2-ene è dimostrata dalla preparazione di diversi isosteri di farmaci e composti guida, contenenti strutture piperidiniche. Un progetto generale per la funzionalizzazione di 2-azabiciclo[2.2.0]es-2-eni è stato elaborato. Un’attenzione particolare è stata riservata ai 2-azabiciclo[2.2.0]es-2-eni con sostituenti sul C5 “psuedoassiali”, che possono servire come isosteri di piperidine nella loro conformazione assiale termodinamicamente sfavorevole, senza la necessità di introdurre atomi di carbonio addizionali.

Purchased from AmBeed: ; ; ; ;

Alternative Products

Product Details of [ 3430-16-8 ]

CAS No. :3430-16-8
Formula : C6H6BrN
M.W : 172.02
SMILES Code : CC1=CN=CC(Br)=C1
MDL No. :MFCD01646141
InChI Key :ADCLTLQMVAEBLB-UHFFFAOYSA-N
Pubchem ID :817713

Safety of [ 3430-16-8 ]

GHS Pictogram:
Signal Word:Danger
Hazard Statements:H302-H318
Precautionary Statements:P280-P301+P312+P330-P305+P351+P338+P310

Computational Chemistry of [ 3430-16-8 ] Show Less

Physicochemical Properties

Num. heavy atoms 8
Num. arom. heavy atoms 6
Fraction Csp3 0.17
Num. rotatable bonds 0
Num. H-bond acceptors 1.0
Num. H-bond donors 0.0
Molar Refractivity 36.9
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

12.89 ?2

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

1.87
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

1.91
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

2.15
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

1.58
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

2.54
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

2.01

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-2.66
Solubility 0.372 mg/ml ; 0.00216 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-1.8
Solubility 2.7 mg/ml ; 0.0157 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-3.26
Solubility 0.0948 mg/ml ; 0.000551 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

Yes
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-5.99 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

2.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.31

Application In Synthesis of [ 3430-16-8 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 3430-16-8 ]

[ 3430-16-8 ] Synthesis Path-Downstream   1~4

  • 1
  • [ 3430-16-8 ]
  • [ 78191-00-1 ]
  • [ 42972-46-3 ]
YieldReaction ConditionsOperation in experiment
To 3-bromo-5-methylpyridine 1-1 (2 g, 11.63 mmol) in diethyl ether (30 ml) at -78 C was added uLi (8.72 ml, 13.95 mmol) dropwise. After 30 min, N-methoxy-N- methylacetamide n-BuLi was added. The resulting mixture was stirred at -78 C for 2 h then at rt overnight, quenched with saturated NH4CI solution and diluted with EtOAc. The organic layer was washed with water, brine, dried over magnesium sulfate and concentrated to give a yellow residue, which was purified by column chromatography (0-65% EtOAc in hexane) to give the desired product 1-2: 1H NMR (400 MHz, CDCI3) δ 8.98 (s, IH), 8.62 (s, IH), 8.04 (s, IH), 2.63 (s, 3H)5 2.41 (s, 3H).
  • 2
  • [ 3430-16-8 ]
  • [ 42972-46-3 ]
YieldReaction ConditionsOperation in experiment
300 mg With bis-triphenylphosphine-palladium(II) chloride; tributyl(1-ethoxyvinyl)stannane; potassium carbonate; In water; N,N-dimethyl-formamide; at 110℃; for 1.0h;Microwave irradiation; The following are successively introduced into a microwave tube: 484 μΙ (4.07 mmol) of 3-bromo-5-methylpyridine in 20 mL of H2O/DMF: (1/3: v/v), 2.03 mL (5.70 mmol) of tributyl(1-ethoxyvinyl)tin, 57.12 mg (0.081 mmol) of bis(triphenylphosphine)palladium(ll) chloride, 1.12 g (8.14 mmol) of potassium carbonate. This mixture is subjected to microwave irradiation at 110C for 1 hour. The reaction mixture is evaporated to dryness and the residue is then taken up in water and extracted with ethyl acetate. The organic phase is dried over magnesium sulfate and evaporated to dryness. The residue obtained is taken up in 6 mL of methanol and 1 mL of 6 N HCl, and the solution is stirred overnight at room temperature. The reaction medium is evaporated to dryness and the residue is taken up in saturated aqueous NaHCO3 solution and extracted with ethyl acetate. The organic phase is dried over magnesium sulfate and evaporated to dryness. The residue is purified by chromatography on silica gel (eluent: 50/50 EtOAc/heptane) to give 300 mg of 1-(5- methylpyrid-3-yl)ethanone, the characteristics of which are as follows: LC/MS (method G): ESI+ [M+H]+: m/z 136 tr (min) = 0.78 1H NMR (300 MHz, δ in ppm, DMSO-d6): 2.37 (s, 3H), 2.62 (s, 3H), 8.1 (s, 1 H), 8.63 (s, 1 H), 8.93 (s, 1 H).
  • 3
  • [ 3430-16-8 ]
  • [ 885069-14-7 ]
  • [ 76-05-1 ]
  • N-(6-(5-methylpyridin-3-yl)benzo[d]thiazol-2-yl)acetamide 2,2,2-trifluoroacetate [ No CAS ]
  • 4
  • [ 3430-16-8 ]
  • [ 97674-02-7 ]
  • [ 42972-46-3 ]
YieldReaction ConditionsOperation in experiment
300 mg With bis-triphenylphosphine-palladium(II) chloride; potassium carbonate; In water; N,N-dimethyl-formamide; at 110℃; for 1.0h;Microwave irradiation; The following are successively introduced into a microwave tube: 484 μl (4.07 mmol) of 3-bromo-5-methylpyridine in 20 mL of H2O/DMF: (1/3: v/v), 2.03 mL (5.70 mmol) of tributyl(1-ethoxyvinyl)tin, 57.12 mg (0.081 mmol) of bis(triphenylphosphine)palladium(II) chloride, 1.12 g (8.14 mmol) of potassium carbonate. This mixture is subjected to microwave irradiation at 110 C. for 1 hour. The reaction mixture is evaporated to dryness and the residue is then taken up in water and extracted with ethyl acetate. The organic phase is dried over magnesium sulfate and evaporated to dryness. The residue obtained is taken up in 6 mL of methanol and 1 mL of 6 N HCl, and the solution is stirred overnight at room temperature. The reaction medium is evaporated to dryness and the residue is taken up in saturated aqueous NaHCO3 solution and extracted with ethyl acetate. The organic phase is dried over magnesium sulfate and evaporated to dryness. The residue is purified by chromatography on silica gel (eluent: 50/50 EtOAc/heptane) to give 300 mg of 1-(5-methylpyrid-3-yl)ethanone, the characteristics of which are as follows: LC/MS (method G): ESI+ [M+H]+: m/z 136 tr (min)=0.78 1H NMR (300 MHz, δ in ppm, DMSO-d6): 2.37 (s, 3H), 2.62 (s, 3H), 8.1 (s, 1H), 8.63 (s, 1H), 8.93 (s, 1H).
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 3430-16-8 ]

Bromides

Chemical Structure| 27063-98-5

A176108 [27063-98-5]

3-Bromo-4,5-dimethylpyridine

Similarity: 0.93

Chemical Structure| 142337-95-9

A285693 [142337-95-9]

3-Bromo-5-ethylpyridine

Similarity: 0.93

Chemical Structure| 118775-69-2

A267858 [118775-69-2]

3-Bromo-5-(prop-1-en-2-yl)pyridine

Similarity: 0.91

Chemical Structure| 142137-17-5

A204358 [142137-17-5]

3-Bromo-5-phenylpyridine

Similarity: 0.89

Chemical Structure| 38749-76-7

A327545 [38749-76-7]

3-Bromo-4-ethylpyridine

Similarity: 0.89

Related Parent Nucleus of
[ 3430-16-8 ]

Pyridines

Chemical Structure| 27063-98-5

A176108 [27063-98-5]

3-Bromo-4,5-dimethylpyridine

Similarity: 0.93

Chemical Structure| 142337-95-9

A285693 [142337-95-9]

3-Bromo-5-ethylpyridine

Similarity: 0.93

Chemical Structure| 118775-69-2

A267858 [118775-69-2]

3-Bromo-5-(prop-1-en-2-yl)pyridine

Similarity: 0.91

Chemical Structure| 142137-17-5

A204358 [142137-17-5]

3-Bromo-5-phenylpyridine

Similarity: 0.89

Chemical Structure| 38749-76-7

A327545 [38749-76-7]

3-Bromo-4-ethylpyridine

Similarity: 0.89