Structure of 3430-16-8
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
4H-Dewar Pyridines: Dearomative approach towards programmable piperidine isosteres
Jan Petrov?i? ;
Abstract: Piperidine is the most frequently encountered aliphatic heterocycle in medicinal chemistry. Despite its prevalence, there is a constant demand for improvement of ADME (absorption, distribution, metabolism, excretion) properties of piperidine-containing drugs and drug candidates. 2-azabicyclo[2.2.0]hexanes present an exciting class of more rigid and structurally programmable piperidine isosteres. EVA (exit vector analysis) of the most frequently employed piperidine isosteres and 2-azabicyclo[2.2.0]hexanes is presented, and a side-by-side comparison is made. This dissertation describes our endeavors towards the expansion of accessible 2-azabicyclo[2.2.0]hex-5-ene chemical space, our exploration of 2-azabicyclo[2.2.0]hex-5-ene scaffold reactivity in olefin functionalization reactions and installation of synthetically useful handles. The malleability and practicality of 2-azabicyclo[2.2.0]hexane core is demonstrated by preparation of several isosteres of piperidine-containing drugs and lead compounds. A general blueprint for functionalized 2-azabicyclo[2.2.0]hexanes is devised. Special attention is devoted to “pseudoaxial” C5-substituted-2-azabicyclo[2.2.0]hexanes, which could serve as isosteres of piperidines in their thermodynamically unfavorable axial conformations without the need to introduce additional carbon atoms. La piperidina è l’eterociclo alifatico più frequente nella chimica farmaceutica (medicinal chemistry). Nonostante la sua prevalenza, c’è una costante domanda for il miglioramento delle proprietà ADME (assorbimento, distribuzione, metabolismo, escrezione) di farmaci e candidati farmaci contenenti strutture piperidiniche. Gli 2-azabiciclo[2.2.0]esani rappresentano un’interessante classe di isosteri della piperidina più rigidi e programmabili strutturalmente. L’EVA (exit vector analysis, analisi di vettore di uscita) degli isosteri della piperidina più frequentemente utilizzati e di 2-azabiciclo[2.2.0]esani viene mostrata, ed è stata eseguita una comparazione tra loro. Questa tesi descrive i nostri sforzi verso l’espansione di spazio chimico accessibile dei 2-azabiciclo[2.2.0]es-2-eni, la nostra esplorazione della reattività della struttura di tipo 2-azabiciclo[2.2.0]es-2-ene nelle reazioni di funzionalizzazione delle olefine e l’installazione di appigli sinteticamente utili. La malleabilità e praticabilità del nucleo di tipo 2-azabiciclo[2.2.0]es-2-ene è dimostrata dalla preparazione di diversi isosteri di farmaci e composti guida, contenenti strutture piperidiniche. Un progetto generale per la funzionalizzazione di 2-azabiciclo[2.2.0]es-2-eni è stato elaborato. Un’attenzione particolare è stata riservata ai 2-azabiciclo[2.2.0]es-2-eni con sostituenti sul C5 “psuedoassiali”, che possono servire come isosteri di piperidine nella loro conformazione assiale termodinamicamente sfavorevole, senza la necessità di introdurre atomi di carbonio addizionali.
Show More >
CAS No. : | 3430-16-8 |
Formula : | C6H6BrN |
M.W : | 172.02 |
SMILES Code : | CC1=CN=CC(Br)=C1 |
MDL No. : | MFCD01646141 |
InChI Key : | ADCLTLQMVAEBLB-UHFFFAOYSA-N |
Pubchem ID : | 817713 |
GHS Pictogram: |
![]() ![]() |
Signal Word: | Danger |
Hazard Statements: | H302-H318 |
Precautionary Statements: | P280-P301+P312+P330-P305+P351+P338+P310 |
Num. heavy atoms | 8 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.17 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 36.9 |
TPSA ? Topological Polar Surface Area: Calculated from |
12.89 ?2 |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.87 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.91 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.15 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.58 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.54 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.01 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.66 |
Solubility | 0.372 mg/ml ; 0.00216 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-1.8 |
Solubility | 2.7 mg/ml ; 0.0157 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.26 |
Solubility | 0.0948 mg/ml ; 0.000551 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.99 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
2.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.31 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
To 3-bromo-5-methylpyridine 1-1 (2 g, 11.63 mmol) in diethyl ether (30 ml) at -78 C was added uLi (8.72 ml, 13.95 mmol) dropwise. After 30 min, N-methoxy-N- methylacetamide n-BuLi was added. The resulting mixture was stirred at -78 C for 2 h then at rt overnight, quenched with saturated NH4CI solution and diluted with EtOAc. The organic layer was washed with water, brine, dried over magnesium sulfate and concentrated to give a yellow residue, which was purified by column chromatography (0-65% EtOAc in hexane) to give the desired product 1-2: 1H NMR (400 MHz, CDCI3) δ 8.98 (s, IH), 8.62 (s, IH), 8.04 (s, IH), 2.63 (s, 3H)5 2.41 (s, 3H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
300 mg | With bis-triphenylphosphine-palladium(II) chloride; tributyl(1-ethoxyvinyl)stannane; potassium carbonate; In water; N,N-dimethyl-formamide; at 110℃; for 1.0h;Microwave irradiation; | The following are successively introduced into a microwave tube: 484 μΙ (4.07 mmol) of 3-bromo-5-methylpyridine in 20 mL of H2O/DMF: (1/3: v/v), 2.03 mL (5.70 mmol) of tributyl(1-ethoxyvinyl)tin, 57.12 mg (0.081 mmol) of bis(triphenylphosphine)palladium(ll) chloride, 1.12 g (8.14 mmol) of potassium carbonate. This mixture is subjected to microwave irradiation at 110C for 1 hour. The reaction mixture is evaporated to dryness and the residue is then taken up in water and extracted with ethyl acetate. The organic phase is dried over magnesium sulfate and evaporated to dryness. The residue obtained is taken up in 6 mL of methanol and 1 mL of 6 N HCl, and the solution is stirred overnight at room temperature. The reaction medium is evaporated to dryness and the residue is taken up in saturated aqueous NaHCO3 solution and extracted with ethyl acetate. The organic phase is dried over magnesium sulfate and evaporated to dryness. The residue is purified by chromatography on silica gel (eluent: 50/50 EtOAc/heptane) to give 300 mg of 1-(5- methylpyrid-3-yl)ethanone, the characteristics of which are as follows: LC/MS (method G): ESI+ [M+H]+: m/z 136 tr (min) = 0.78 1H NMR (300 MHz, δ in ppm, DMSO-d6): 2.37 (s, 3H), 2.62 (s, 3H), 8.1 (s, 1 H), 8.63 (s, 1 H), 8.93 (s, 1 H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
300 mg | With bis-triphenylphosphine-palladium(II) chloride; potassium carbonate; In water; N,N-dimethyl-formamide; at 110℃; for 1.0h;Microwave irradiation; | The following are successively introduced into a microwave tube: 484 μl (4.07 mmol) of 3-bromo-5-methylpyridine in 20 mL of H2O/DMF: (1/3: v/v), 2.03 mL (5.70 mmol) of tributyl(1-ethoxyvinyl)tin, 57.12 mg (0.081 mmol) of bis(triphenylphosphine)palladium(II) chloride, 1.12 g (8.14 mmol) of potassium carbonate. This mixture is subjected to microwave irradiation at 110 C. for 1 hour. The reaction mixture is evaporated to dryness and the residue is then taken up in water and extracted with ethyl acetate. The organic phase is dried over magnesium sulfate and evaporated to dryness. The residue obtained is taken up in 6 mL of methanol and 1 mL of 6 N HCl, and the solution is stirred overnight at room temperature. The reaction medium is evaporated to dryness and the residue is taken up in saturated aqueous NaHCO3 solution and extracted with ethyl acetate. The organic phase is dried over magnesium sulfate and evaporated to dryness. The residue is purified by chromatography on silica gel (eluent: 50/50 EtOAc/heptane) to give 300 mg of 1-(5-methylpyrid-3-yl)ethanone, the characteristics of which are as follows: LC/MS (method G): ESI+ [M+H]+: m/z 136 tr (min)=0.78 1H NMR (300 MHz, δ in ppm, DMSO-d6): 2.37 (s, 3H), 2.62 (s, 3H), 8.1 (s, 1H), 8.63 (s, 1H), 8.93 (s, 1H). |
A267858 [118775-69-2]
3-Bromo-5-(prop-1-en-2-yl)pyridine
Similarity: 0.91
A267858 [118775-69-2]
3-Bromo-5-(prop-1-en-2-yl)pyridine
Similarity: 0.91