Purity | Size | Price | VIP Price | USA Stock *0-1 Day | Global Stock *5-7 Days | Quantity | ||||||
{[ item.p_purity ]} | {[ item.pr_size ]} | Inquiry |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price) ]} |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} | Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price) ]} | {[ item.pr_usastock ]} | in stock Inquiry - | {[ item.pr_chinastock ]} | {[ item.pr_remark ]} in stock Inquiry - | Login | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
Extended shortwave infrared absorbing antiaromatic fluorenium-indolizine chromophores
Meador, William E ; Saucier, Matthew A ; Tucker, Max R , et al. Chem. Sci.,2024,15,12349-12360. DOI: 10.1039/D4SC00733F
More
Abstract: Shortwave infrared (SWIR, 1000-1700 nm) and extended SWIR (ESWIR, 1700-2700 nm) absorbing materials are valuable for applications including fluorescence based biological imaging, photodetectors, and light emitting diodes. Currently, ESWIR absorbing materials are largely dominated by inorganic semiconductors which are often costly both in raw materials and manufacturing processes used to produce them. The development of ESWIR absorbing organic molecules is thus of interest due to the tunability, solution processability, and low cost of organic materials compared to their inorganic counterparts. Herein, through the combination of heterocyclic indolizine donors and an antiaromatic fluorene core, a series of organic chromophores with absorption maxima ranging from 1470-2088 nm (0.84-0.59 eV) and absorption onsets ranging from 1693-2596 nm (0.73-0.48 eV) are designed and synthesized. The photophysical and electrochemical properties of these chromophores, referred to as FluIndz herein, are described via absorption spectroscopy in 17 solvents, cyclic voltammetry, solution photostability, and transient absorption spectroscopy. Molecular orbital energies, predicted electronic transitions, and antiaromaticity are compared to higher energy absorbing chromophores using density functional theory. The presence of thermally accessible diradical states is demonstrated using density functional theory and EPR spectroscopy, while XRD crystallography confirms structural connectivity and existence as a single molecule. Overall, the FluIndz chromophore scaffold exhibits a rational means to access organic chromophores with extremely narrow optical gaps.
Purchased from AmBeed: 131747-63-2 ; 3375-31-3 ; 14221-01-3 ; 53358-54-6
CAS No. : | 3375-31-3 | MDL No. : | MFCD00012453 |
Formula : | C4H6O4Pd | Boiling Point : | - |
Linear Structure Formula : | - | InChI Key : | YJVFFLUZDVXJQI-UHFFFAOYSA-L |
M.W : | 224.51 | Pubchem ID : | 167845 |
Synonyms : |
|
Chemical Name : | Palladium(II) acetate |
Signal Word: | Danger | Class: | 9 |
Precautionary Statements: | P261-P264-P270-P271-P280-P302+P352-P304+P340-P305+P351+P338-P310-P330-P362+P364-P403+P233-P501 | UN#: | 3077 |
Hazard Statements: | H302-H315-H318-H335-H410 | Packing Group: | Ⅲ |
GHS Pictogram: |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With sodium chloride; sodium t-butanolate; In 1,2-dimethoxyethane; | Example 5 3-(ETHOXY-HYDROXY-METHYLENE)-3H-INDENE-1-CARBONITRILE, SODIUM SALT A solution of tricyclohexylphosphine (21.5 mg, 0.0770 mmol) in ethylene glycol dimethyl ether (10 mL) under nitrogen was charged with palladium (II) acetate (11.5 mg, 0.0510 mmol). The reaction was stirred at room temperature until the solution was homogenous (approx. 15 minutes), cooled to 0° C. and charged with sodium tert-butoxide (2.53 g, 25.5 mmol). After 5 minutes a solution of 2-bromo-phenylacetonitrile (1.32 mL, 10.2 mmol) and ethyl-3-ethoxyacrylate (1.47 mL, 10.2 mmol) in ethylene glycol dimethyl ether (10 ml) was added dropwise over 10 minutes. Upon complete addition, the reaction was warmed to room temperature then heated to 85° C. for 1 hour. The reaction was cooled to room temperature then diluted with ethyl acetate (50 mL) and poured into aqueous potassium dihydrogen phosphate (0.25 M, 50 mL), pH=7. The aqueous layer was saturated by addition of sodium chloride as solid and the organic layer separated and washed with aqueous saturated sodium chloride (1*50 mL), dried over anhydrous sodium sulfate, filtered and concentrated in vacuo affording 3-(ethoxy-hydroxy-methylene)-3H-indene-1-carbonitrile, sodium salt, as a dark brown oil (1.74 g, 84percent) which solidifies on standing. 1H NMR (400 MHz, CD3CN) delta8.04 (d, 1H, J=6.0), 7.58 (s, 1H), 7.43 (d, 1H, J=6.0), 6.98-6.91 (m, 2H), 4.25 (q, 2H, J=7.2), 1.35 (t, 3H, J=7.2); 13C NMR (100 MHz, CD3CN) delta166.7, 135.5, 132.3, 131.3, 122.8, 120.5, 119.0, 118.4, 117.7, 103.3, 79.2, 58.2, 14.6; IR (ATR, neat) 2176, 1597, 1465, 1257, 1195,1068, 1029, 754 cm-1. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With sodium chloride; sodium t-butanolate; In 1,2-dimethoxyethane; | Example 7 3-(ETHOXY-HYDROXY-METHYLENE)-5,6-DIMETHOXY-3H-INDENE-1-CARBONITRILE, SODIUM SALT A solution of tricyclohexylphosphine (82.0 mg, 0.293 mmol) in ethylene glycol dimethyl ether (10 mL) under nitrogen was charged with palladium (II) acetate (43.7 mg, 0.195 mmol). The reaction was stirred at room temperature until the solution was homogeneous (approx. 15 minutes) and stirred an additional 5 minutes before cooling to 0° C. and charging with sodium tert-butoxide (996 mg, 9.75 mmol). After 5 minutes a solution of 2-bromo-4,5-dimethoxyphenylacetonitrile (1.00 g, 3.90 mmol) and ethyl-3-ethoxyacrylate (0.564 ml, 3.90 mmol) in ethylene glycol dimethyl ether (5 ml) was added dropwise over 10 minutes. Upon complete addition the reaction mixture was warmed to room temperature and then heated to 85° C. for 16 hours. The reaction was cooled to room temperature then diluted with methyl tert-butyl ether (50 mL) and poured into aqueous potassium dihydrogenphosphate (0.25 M, 100 mL). The aqueous layer was separated and solid sodium chloride was added to the aqueous layer until saturated. The aqueous layer was extracted with ethyl acetate (1*125 mL) and this organic layer was washed with aqueous saturated sodium chloride 12*35 ml), dried over sodium sulfate, filtered and concentrated in vacuo affording 3-(ethoxy-hydroxy-methylene)-5,6-dimethoxy-3H-indene-1-carbonitrile, sodium salt, as a dark brown oil (906 mg, 3.3 mmol, 85 percent) which crystallized on standing. 1H NMR (400 MHz, d4-MeOH) delta7.64 (s, 1H), 7.46 (s, 1H), 6.99 (s, 1H), 4.56 (q, 2H, J=7.1), 3.86 (s, 6H), 1.38 (t, 3H, J=7.05); 13C NMR (100 MHz,d4-MeOH) delta167.8, 145.0, 144.5, 130.2, 129.4, 126.4, 123.3, 112.5, 104.0, 102.6, 100.7, 79.0, 58.4, 55.6, 14.1; IR (ATR, neat) 3499, 2164, 1629, 1482, 1449, 1282, 1207, 1157, 1124, 1076, 845, 769 cm-1. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With nitrogen; In toluene; | EXAMPLE 16 2-Methyl-2-(4-{2-[5-methyl-2-(4-phenoxy-phenyl)-oxazol-4-yl]-ethoxy}-phenoxy)-propionic Acid A mixture of 2-(4-{2-[2-(4-bromo-phenyl)-5-methyl-oxazol-4-yl]-ethoxy}-phenoxy)-2-methyl-propionic Acid Ethyl Ester (0.30 g, 0.614 mmol), potassium phosphate (0.26 g, 1.22 mmol), 2-(di-tert-butylphosphino)biphenyl (0.014 g, 0.0469 mmol) and phenol (0.069 g, 0.733 mmol) in toluene (6 mL) was degassed three times by successive application of vacuum to the reaction vessel followed by nitrogen purge. Palladium (II) acetate (0.007 g, 0.0312 mmol) was added to the reaction and the mixture heated to reflux under nitrogen for 3 h. The reaction was cooled to room temperature, diluted with Et2O, and extracted with water then 1 N NaOH (10 mL). The organic layer was dried (MgSO4) and the solvent removed in vacuo to give 0.316 g of crude 2-methyl-2-(4-{2-[5-methyl-2-(4-phenoxy-phenyl)-oxazol-4-yl]-ethoxy}-phenoxy)-propionic acid ethyl ester MS (ES+) Calc'd for C30H31NO6: Found m/e 502.3 (M+1, 100percent). |