*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Yuan, Gengyang ; Dhaynaut, Maeva ; Lan, Yu ; Guehl, Nicolas J. ; Huynh, Dalena ; Iyengar, Suhasini M. , et al.
Abstract: Metabotropic glutamate receptor 2 (mGluR2) is a therapeutic target for several neuropsychiatric disorders. An mGluR2 function in etiology could be unveiled by positron emission tomography (PET). In this regard, 5-(2-fluoro-4-[11C]methoxyphenyl)-2,2-dimethyl-3,4-dihydro-2H-pyrano[2,3-b]pyridine-7-carboxamide ([11C]13, [11C]mG2N001), a potent negative allosteric modulator (NAM), was developed to support this endeavor. [11C]13 was synthesized via the O-[11C]methylation of phenol 24 with a high molar activity of 212 ± 76 GBq/μmol (n = 5) and excellent radiochemical purity (>99%). PET imaging of [11C]13 in rats demonstrated its superior brain heterogeneity and reduced accumulation with pretreatment of mGluR2 NAMs, VU6001966 (9) and MNI-137 (26), the extent of which revealed a time-dependent drug effect of the blocking agents. In a nonhuman primate, [11C]13 selectively accumulated in mGluR2-rich regions and resulted in high-contrast brain images. Therefore, [11C]13 is a potential candidate for translational PET imaging of the mGluR2 function.
Show More >
Purchased from AmBeed: 16289-54-6 ; 5521-55-1 ; 22047-25-2 ; 98-80-6 ; 40155-47-3 ; 5720-05-8 ; 879-65-2 ; 98-96-4 ; 31519-62-7 ; 23688-89-3 ; 23611-75-8 ; 33332-25-1 ; 20737-42-2 ; 61442-38-4 ; 17933-03-8 ; 50681-25-9 ; 13924-99-7 ; 40155-43-9 ; 166744-78-1 ; 36070-80-1 ; 4595-61-3 ; 118853-60-4 ; 41110-28-5 ; 40155-42-8 ; 937669-80-2 ; 31462-59-6 ; 16419-60-6 ; 5424-01-1 ; 59-67-6 ; 34604-60-9 ; 27398-39-6 ; 1196151-53-7 ; 19847-12-2 ; 13965-03-2 ; 876161-05-6 ; 27825-21-4 ; 2164-61-6 ; 4604-72-2 ; 98-97-5 ; 24005-61-6 ; 5521-61-9 ; 2516-34-9 ; 2719-27-9 ; 123-90-0 ; 6761-50-8 ; 625-43-4 ; 872-64-0 ; 1309866-36-1 ; 36932-49-7 ; 1528085-68-8 ; 1195533-51-7 ; 13534-79-7
Show More >
Structure activity relationship of pyrazinoic acid analogs as potential antimycobacterial agents
Hegde, Pooja V. ; Aragaw, Wassihun W. ; Cole, Malcolm S. ; Jachak, Gorakhnath ; Ragunathan, Priya ; Sharma, Sachin , et al.
Abstract: Tuberculosis (TB) remains a leading cause of infectious disease-related mortality and morbidity. Pyrazinamide (PZA) is a critical component of the first-line TB treatment regimen because of its sterilizing activity against non-replicating Mycobacterium tuberculosis (Mtb), but its mechanism of action has remained enigmatic. PZA is a prodrug converted by pyrazinamidase encoded by pncA within Mtb to the active moiety, pyrazinoic acid (POA) and PZA resistance is caused by loss-of-function mutations to pyrazinamidase. We have recently shown that POA induces targeted protein degradation of the enzyme PanD, a crucial component of the CoA biosynthetic pathway essential in Mtb. Based on the newly identified mechanism of action of POA, along with the crystal structure of PanD bound to POA, we designed several POA analogs using structure for interpretation to improve potency and overcome PZA resistance. We prepared and tested ring and carboxylic acid bioisosteres as well as 3, 5, 6 substitutions on the ring to study the structure activity relationships of the POA scaffold. All the analogs were evaluated for their whole cell antimycobacterial activity, and a few representative mols. were evaluated for their binding affinity, towards PanD, through isothermal titration calorimetry. We report that analogs with ring and carboxylic acid bioisosteres did not significantly enhance the antimicrobial activity, whereas the alkylamino-group substitutions at the 3 and 5 position of POA were found to be up to 5 to 10-fold more potent than POA. Further development and mechanistic anal. of these analogs may lead to a next generation POA analog for treating TB.
Show More >
Keywords: Tuberculosis ; Pyrazinoic acid ; pyrazinamide
Show More >
Purchased from AmBeed: 16289-54-6 ; 5521-55-1 ; 22047-25-2 ; 98-80-6 ; 40155-47-3 ; 5720-05-8 ; 879-65-2 ; 98-96-4 ; 31519-62-7 ; 23688-89-3 ; 23611-75-8 ; 33332-25-1 ; 20737-42-2 ; 61442-38-4 ; 17933-03-8 ; 50681-25-9 ; 13924-99-7 ; 40155-43-9 ; 36070-80-1 ; 4595-61-3 ; 118853-60-4 ; 41110-28-5 ; 40155-42-8 ; 937669-80-2 ; 98-98-6 ; 31462-59-6 ; 16419-60-6 ; 5424-01-1 ; 59-67-6 ; 34604-60-9 ; 27398-39-6 ; 1196151-53-7 ; 19847-12-2 ; 13965-03-2 ; 876161-05-6 ; 27825-21-4 ; 2164-61-6 ; 4604-72-2 ; 98-97-5 ; 24005-61-6 ; 103-67-3 ; 5521-61-9 ; 2516-34-9 ; 2719-27-9 ; 123-90-0 ; 6761-50-8 ; 625-43-4 ; 872-64-0 ; 36932-49-7 ; 1528085-68-8 ; 1195533-51-7 ; 13534-79-7
Show More >
CAS No. : | 33332-25-1 |
Formula : | C6H5ClN2O2 |
M.W : | 172.57 |
SMILES Code : | ClC1=CN=C(C=N1)C(=O)OC |
MDL No. : | MFCD01632102 |
InChI Key : | CVVMLRFXZPKILB-UHFFFAOYSA-N |
Pubchem ID : | 406081 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 11 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.17 |
Num. rotatable bonds | 2 |
Num. H-bond acceptors | 4.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 38.32 |
TPSA ? Topological Polar Surface Area: Calculated from |
52.08 ?2 |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.5 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
0.47 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
0.92 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
-0.26 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
1.38 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
0.8 |
Log S (ESOL):? ESOL: Topological method implemented from |
-1.48 |
Solubility | 5.75 mg/ml ; 0.0333 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (Ali)? Ali: Topological method implemented from |
-1.13 |
Solubility | 12.7 mg/ml ; 0.0737 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.34 |
Solubility | 0.789 mg/ml ; 0.00457 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-7.02 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.99 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
50% | With hydrazine; In methanol; for 48.0h;Heating / reflux; | Preparation 1; 5-ChloroDvrazine-2-carboxvlic acid hvdrazide; delta-chloropyrazine^-carboxylic acid methyl ester (10.02g, 58.25mmol) and hydrazine monohydrate (12.5ml_, 250mmol) were dissolved in methanol (40OmL) and the reaction mixture heated to reflux for 48 hours. The reaction mixture was then filtered and the precipitate collected dried in vacuo to yield the title product, 5.01 g (50%). 1H NMR(CDCI3, 400MHz) delta: 4.09(d, 2H), 8.52(s, 1 H), 8.66(bs, 1 H), 9.14(s, 1 H). Microanalysis: C5H5CIN4O requires: C 34.80; H 2.92; N 32.47; found C 34.89; H 2.91 , N 32.32. MS APCI+ m/z 173 [MH]+ |
50% | With hydrazine; In methanol; for 48.0h;Heating / reflux; | delta-chloro-pyrazine^-carboxylic acid methyl ester (10.02g, 58.25mmol) and hydrazine monohydrate(12.5mL, 250mmol) were dissolved in methanol (40OmL) and the reaction mixture heated to reflux for 48 hours. The reaction mixture was then filtered and the precipitate collected dried in vacuo to yield the title compound, 5.01 g (50%).1H NMR(CDCI3, 400MHz) delta: 4.09(d, 2H), 8.52(s, 1 H), 8.66(bs, 1 H), 9.14(s, 1 H). Microanalysis:C5H5CIN4O requires: C 34.80; H" 2.92; N 32.47; found C 34.89; H 2.91 , N 32.32. MS APCI+ m/z 173[MH]+ |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
5% | With caesium carbonate; In N,N-dimethyl-formamide; at 20 - 90℃; | To a solution of <strong>[1196473-37-6]3H-benzo[c][1,2]oxaborole-1,6-diol</strong> (0.37 g, 2.47 mmol) in anhydrous DMF (8 mL) were added Cs2CO3 (2.01 g, 2.71 mmol) and 5-chloro-pyrazine-2-carboxylic acid methyl ester (0.468 g, 2.71 mmol) at room temperature. After stirring at 90° C. for 1.5 h, the reaction mixture was cooled to 0° C., diluted with water (10 mL) and acidified to pH 3 using diluted hydrochloric acid. The off-white precipitate was collected, washed with water and dried to give the crude product which was purified by chromatography on silica gel (DCM/MeOH=40:3) to give 0.470 g (66.5percent yield) of product. MS (ESI) m/z=287 [M+H]+. |
With caesium carbonate; In N,N-dimethyl-formamide; at 90℃; for 1.5h; | To a solution of 20 (0.37 g, 2.47 mmol) in anhydrous DMF (8 mL) were added Cs2CO3 (2.01 g, 2.71 mmol) and 5-chloro-pyrazine-2-carboxylic acid methyl ester (0.468 g, 2.71 mmol) at room temperature. After stirring at 90 °C for 1.5 h, the reaction mixture was cooled to 0 °C, diluted with water (10 mL) and acidified to pH 3 using diluted hydrochloric acid. The off-white precipitate was collected, washed with water and dried to give the crude product which was purified by chromatography on silica gel (DCM/MeOH = 40:3) to give 0.47 g (66.5percent) of 21. |
A134965 [23611-75-8]
Methyl 6-chloropyrazine-2-carboxylate
Similarity: 1.00
A243080 [1166831-45-3]
Methyl 6-chloro-3-methylpyrazine-2-carboxylate
Similarity: 0.95
A133165 [23688-89-3]
6-Chloropyrazine-2-carboxylic acid
Similarity: 0.89
A184178 [36070-80-1]
5-Chloropyrazine-2-carboxylic acid
Similarity: 0.89
A190360 [76537-42-3]
5,6-Dichloropyrazine-2-carboxylic acid
Similarity: 0.86
A134965 [23611-75-8]
Methyl 6-chloropyrazine-2-carboxylate
Similarity: 1.00
A243080 [1166831-45-3]
Methyl 6-chloro-3-methylpyrazine-2-carboxylate
Similarity: 0.95
A142077 [144692-85-3]
2,3-Dichlorofuro[3,4-b]pyrazine-5,7-dione
Similarity: 0.86
A207024 [1458-03-3]
Methyl 3-amino-6-chloropyrazine-2-carboxylate
Similarity: 0.85
A108171 [1458-18-0]
Methyl 3-amino-5,6-dichloropyrazine-2-carboxylate
Similarity: 0.82
A134965 [23611-75-8]
Methyl 6-chloropyrazine-2-carboxylate
Similarity: 1.00
A243080 [1166831-45-3]
Methyl 6-chloro-3-methylpyrazine-2-carboxylate
Similarity: 0.95
A133165 [23688-89-3]
6-Chloropyrazine-2-carboxylic acid
Similarity: 0.89
A184178 [36070-80-1]
5-Chloropyrazine-2-carboxylic acid
Similarity: 0.89
A190360 [76537-42-3]
5,6-Dichloropyrazine-2-carboxylic acid
Similarity: 0.86