成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

Home Cart 0 Sign in  

[ CAS No. 3179-76-8 ] {[proInfo.proName]}

,{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]}
HazMat Fee +

There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.

Type HazMat fee for 500 gram (Estimated)
Excepted Quantity USD 0.00
Limited Quantity USD 15-60
Inaccessible (Haz class 6.1), Domestic USD 80+
Inaccessible (Haz class 6.1), International USD 150+
Accessible (Haz class 3, 4, 5 or 8), Domestic USD 100+
Accessible (Haz class 3, 4, 5 or 8), International USD 200+
Chemical Structure| 3179-76-8
Chemical Structure| 3179-76-8
Structure of 3179-76-8 * Storage: {[proInfo.prStorage]}

Please Login or Create an Account to: See VIP prices and availability

Cart0 Add to My Favorites Add to My Favorites Bulk Inquiry Inquiry Add To Cart

Search after Editing

* Storage: {[proInfo.prStorage]}

* Shipping: {[proInfo.prShipping]}

Quality Control of [ 3179-76-8 ]

Related Doc. of [ 3179-76-8 ]

Alternatived Products of [ 3179-76-8 ]
Product Citations

Product Details of [ 3179-76-8 ]

CAS No. :3179-76-8 MDL No. :MFCD00039785
Formula : C8H21NO2Si Boiling Point : No data available
Linear Structure Formula :- InChI Key :HXLAEGYMDGUSBD-UHFFFAOYSA-N
M.W : 191.34 Pubchem ID :18511
Synonyms :

Calculated chemistry of [ 3179-76-8 ]      Expand+

Physicochemical Properties

Num. heavy atoms : 12
Num. arom. heavy atoms : 0
Fraction Csp3 : 1.0
Num. rotatable bonds : 7
Num. H-bond acceptors : 3.0
Num. H-bond donors : 1.0
Molar Refractivity : 53.32
TPSA : 44.48 ?2

Pharmacokinetics

GI absorption : High
BBB permeant : Yes
P-gp substrate : No
CYP1A2 inhibitor : No
CYP2C19 inhibitor : No
CYP2C9 inhibitor : No
CYP2D6 inhibitor : No
CYP3A4 inhibitor : No
Log Kp (skin permeation) : -6.6 cm/s

Lipophilicity

Log Po/w (iLOGP) : 2.81
Log Po/w (XLOGP3) : 1.22
Log Po/w (WLOGP) : 1.48
Log Po/w (MLOGP) : 0.41
Log Po/w (SILICOS-IT) : -0.23
Consensus Log Po/w : 1.14

Druglikeness

Lipinski : 0.0
Ghose : None
Veber : 0.0
Egan : 0.0
Muegge : 1.0
Bioavailability Score : 0.55

Water Solubility

Log S (ESOL) : -1.33
Solubility : 8.89 mg/ml ; 0.0465 mol/l
Class : Very soluble
Log S (Ali) : -1.75
Solubility : 3.39 mg/ml ; 0.0177 mol/l
Class : Very soluble
Log S (SILICOS-IT) : -2.29
Solubility : 0.97 mg/ml ; 0.00507 mol/l
Class : Soluble

Medicinal Chemistry

PAINS : 0.0 alert
Brenk : 1.0 alert
Leadlikeness : 1.0
Synthetic accessibility : 4.2

Safety of [ 3179-76-8 ]

Signal Word:Danger Class:8
Precautionary Statements:P280-P305+P351+P338-P310 UN#:3267
Hazard Statements:H314 Packing Group:
GHS Pictogram:

Application In Synthesis of [ 3179-76-8 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 3179-76-8 ]

[ 3179-76-8 ] Synthesis Path-Downstream   1~14

  • 1
  • [ 2917-91-1 ]
  • [ 623-57-4 ]
  • [ 15285-59-3 ]
  • [ 3179-76-8 ]
  • [ 3492-47-5 ]
  • C20H47N3O4Si [ No CAS ]
  • C38H88N6O7Si2 [ No CAS ]
YieldReaction ConditionsOperation in experiment
at 20 - 60℃; for 4h; 286.50 parts of 3-aminopropyldiethoxymethylsilane were mixed with 505.40 parts of the freshly prepared organic phase from 1.1 with stirring at room temperature and heated to 60° C. An exothermic reaction took place, during which the temperature was kept at 60° C. by cooling. As soon as the exothermic reaction had passed, the mixture was left to react further for 4 hours at 60° C. and only then cooled to room temperature. Glycidyl groups could no longer be titrated. This was because alkylation of the primary amino groups of the silane had taken place. This thus gave 791.9 parts of a silane mixture (II) with the following main components:
  • 2
  • [ 3179-76-8 ]
  • [ 3027-21-2 ]
  • [ 2996-92-1 ]
  • poly(γ-aminopropyldiethoxymethylsilane-co-phenylmethyldimethoxysilane-co-phenyltrimethoxysilane) [ No CAS ]
YieldReaction ConditionsOperation in experiment
Arninofunctional Silicone Resins A1-A9 were prepared in the following manner. A mixture of phenyltrimethoxysilane, phenylmethyldimethoxysilane, gamma-aminopropyltriethoxysilane (APTES), and/or gamma-aminopropyldiethoxymethylsilane (APDEMS) was optionally dissolved in aromatic solvent and hydrolyzed with deionized water, followed by distillative removal of by-product alcohol. The resulting structure was optionally reacted with trimethylethoxysilane, hexamethyldisilazane (HMDZ), APDEMS and/or dimethyldimethoxysilane, additional solvent and additional water added, a catalytic amount of aqueous potassium hydroxide optionally added and the water removed via azeotrope. The hydroxide, if added, was neutralized with aqueous HCl or acetic acid, and water removed again via azeotrope. The mixture was filtered and solvent removed to yield silicone resin product. The amount of each ingredient is shown in Table 1 below. The final aminofunctional silicone resin composition, wt percent phenyl (Ph), wt percent R2SiO (D), wt percent Me2SiO (D(Me2)), mole percent amino (-CH2CH2CH2NH2), wt percent amine (-NH2), and -NH- (Amine H) equivalent weight are shown in Table 2 below.
  • 3
  • [ 3179-76-8 ]
  • [ 3027-21-2 ]
  • [ 2996-92-1 ]
  • poly(γ-aminopropyldiethoxymethylsilane-co-phenylmethyldimethoxysilane-co-phenyltrimethoxysilane) [ No CAS ]
YieldReaction ConditionsOperation in experiment
Arninofunctional Silicone Resins A1-A9 were prepared in the following manner. A mixture of phenyltrimethoxysilane, phenylmethyldimethoxysilane, gamma-aminopropyltriethoxysilane (APTES), and/or gamma-aminopropyldiethoxymethylsilane (APDEMS) was optionally dissolved in aromatic solvent and hydrolyzed with deionized water, followed by distillative removal of by-product alcohol. The resulting structure was optionally reacted with trimethylethoxysilane, hexamethyldisilazane (HMDZ), APDEMS and/or dimethyldimethoxysilane, additional solvent and additional water added, a catalytic amount of aqueous potassium hydroxide optionally added and the water removed via azeotrope. The hydroxide, if added, was neutralized with aqueous HCl or acetic acid, and water removed again via azeotrope. The mixture was filtered and solvent removed to yield silicone resin product. The amount of each ingredient is shown in Table 1 below. The final aminofunctional silicone resin composition, wt percent phenyl (Ph), wt percent R2SiO (D), wt percent Me2SiO (D(Me2)), mole percent amino (-CH2CH2CH2NH2), wt percent amine (-NH2), and -NH- (Amine H) equivalent weight are shown in Table 2 below.
  • 4
  • [ 3179-76-8 ]
  • [ 3027-21-2 ]
  • [ 2996-92-1 ]
  • poly(γ-aminopropyldiethoxymethylsilane-co-phenylmethyldimethoxysilane-co-phenyltrimethoxysilane) [ No CAS ]
YieldReaction ConditionsOperation in experiment
Arninofunctional Silicone Resins A1-A9 were prepared in the following manner. A mixture of phenyltrimethoxysilane, phenylmethyldimethoxysilane, gamma-aminopropyltriethoxysilane (APTES), and/or gamma-aminopropyldiethoxymethylsilane (APDEMS) was optionally dissolved in aromatic solvent and hydrolyzed with deionized water, followed by distillative removal of by-product alcohol. The resulting structure was optionally reacted with trimethylethoxysilane, hexamethyldisilazane (HMDZ), APDEMS and/or dimethyldimethoxysilane, additional solvent and additional water added, a catalytic amount of aqueous potassium hydroxide optionally added and the water removed via azeotrope. The hydroxide, if added, was neutralized with aqueous HCl or acetic acid, and water removed again via azeotrope. The mixture was filtered and solvent removed to yield silicone resin product. The amount of each ingredient is shown in Table 1 below. The final aminofunctional silicone resin composition, wt percent phenyl (Ph), wt percent R2SiO (D), wt percent Me2SiO (D(Me2)), mole percent amino (-CH2CH2CH2NH2), wt percent amine (-NH2), and -NH- (Amine H) equivalent weight are shown in Table 2 below.
  • 5
  • [ 3179-76-8 ]
  • [ 3027-21-2 ]
  • [ 2996-92-1 ]
  • poly(γ-aminopropyldiethoxymethylsilane-co-phenylmethyldimethoxysilane-co-phenyltrimethoxysilane) [ No CAS ]
YieldReaction ConditionsOperation in experiment
Aminofunctional Silicone Resins B1-B6 were prepared in the following manner. Phenyltrimethoxysilane and/or phenylmethyldimethoxysilane, catalyzed by trifluoromethanesulfonic acid (TFMSA), were hydrolyzed with deionized water, followed by distillative removal of by-product alcohol. Hexamethyldisiloxane (HMDS) and additional water were added and the mixture heated to 50-60° C. optionally followed by distillative removal of volatiles. gamma-Aminopropyltriethoxysilane (APTES) or gamma-aminopropyldiethoxymethylsilane (APDEMS) were added along with additional water, followed by distillative removal of alcohol. Toluene, additional water and optionally a catalytic amount of 1.0 N aqueous potassium hydroxide were added and water removed via azeotrope. If added the hydroxide was neutralized with 1.0 N aqueous HCl, and water again removed via azeotrope. The mixture was filtered and solvent removed. The amount of each ingredient is shown in Table 1 below. The final aminofunctional silicone resin composition, wt percent phenyl (Ph), wt percent R2SiO (D), wt percent Me2SiO (D(Me2)), mole percent amino (-CH2CH2CH2NH2), wt percent amine (-NH2), and -NH- (Amine H) equivalent weight are shown in Table 2 below.
  • 6
  • [ 3179-76-8 ]
  • [ 3027-21-2 ]
  • [ 2996-92-1 ]
  • poly(γ-aminopropyldiethoxymethylsilane-co-phenylmethyldimethoxysilane-co-phenyltrimethoxysilane) [ No CAS ]
YieldReaction ConditionsOperation in experiment
Aminofunctional Silicone Resins B1-B6 were prepared in the following manner. Phenyltrimethoxysilane and/or phenylmethyldimethoxysilane, catalyzed by trifluoromethanesulfonic acid (TFMSA), were hydrolyzed with deionized water, followed by distillative removal of by-product alcohol. Hexamethyldisiloxane (HMDS) and additional water were added and the mixture heated to 50-60° C. optionally followed by distillative removal of volatiles. gamma-Aminopropyltriethoxysilane (APTES) or gamma-aminopropyldiethoxymethylsilane (APDEMS) were added along with additional water, followed by distillative removal of alcohol. Toluene, additional water and optionally a catalytic amount of 1.0 N aqueous potassium hydroxide were added and water removed via azeotrope. If added the hydroxide was neutralized with 1.0 N aqueous HCl, and water again removed via azeotrope. The mixture was filtered and solvent removed. The amount of each ingredient is shown in Table 1 below. The final aminofunctional silicone resin composition, wt percent phenyl (Ph), wt percent R2SiO (D), wt percent Me2SiO (D(Me2)), mole percent amino (-CH2CH2CH2NH2), wt percent amine (-NH2), and -NH- (Amine H) equivalent weight are shown in Table 2 below.
  • 7
  • [ 3179-76-8 ]
  • [ 3027-21-2 ]
  • [ 2996-92-1 ]
  • poly(γ-aminopropyldiethoxymethylsilane-co-phenylmethyldimethoxysilane-co-phenyltrimethoxysilane) [ No CAS ]
YieldReaction ConditionsOperation in experiment
Aminofunctional Silicone Resins B1-B6 were prepared in the following manner. Phenyltrimethoxysilane and/or phenylmethyldimethoxysilane, catalyzed by trifluoromethanesulfonic acid (TFMSA), were hydrolyzed with deionized water, followed by distillative removal of by-product alcohol. Hexamethyldisiloxane (HMDS) and additional water were added and the mixture heated to 50-60° C. optionally followed by distillative removal of volatiles. gamma-Aminopropyltriethoxysilane (APTES) or gamma-aminopropyldiethoxymethylsilane (APDEMS) were added along with additional water, followed by distillative removal of alcohol. Toluene, additional water and optionally a catalytic amount of 1.0 N aqueous potassium hydroxide were added and water removed via azeotrope. If added the hydroxide was neutralized with 1.0 N aqueous HCl, and water again removed via azeotrope. The mixture was filtered and solvent removed. The amount of each ingredient is shown in Table 1 below. The final aminofunctional silicone resin composition, wt percent phenyl (Ph), wt percent R2SiO (D), wt percent Me2SiO (D(Me2)), mole percent amino (-CH2CH2CH2NH2), wt percent amine (-NH2), and -NH- (Amine H) equivalent weight are shown in Table 2 below.
  • 8
  • [ 3179-76-8 ]
  • [ 3027-21-2 ]
  • [ 2996-92-1 ]
  • poly(γ-aminopropyldiethoxymethylsilane-co-phenylmethyldimethoxysilane-co-phenyltrimethoxysilane) [ No CAS ]
YieldReaction ConditionsOperation in experiment
Aminofunctional Silicone Resins B1-B6 were prepared in the following manner. Phenyltrimethoxysilane and/or phenylmethyldimethoxysilane, catalyzed by trifluoromethanesulfonic acid (TFMSA), were hydrolyzed with deionized water, followed by distillative removal of by-product alcohol. Hexamethyldisiloxane (HMDS) and additional water were added and the mixture heated to 50-60° C. optionally followed by distillative removal of volatiles. gamma-Aminopropyltriethoxysilane (APTES) or gamma-aminopropyldiethoxymethylsilane (APDEMS) were added along with additional water, followed by distillative removal of alcohol. Toluene, additional water and optionally a catalytic amount of 1.0 N aqueous potassium hydroxide were added and water removed via azeotrope. If added the hydroxide was neutralized with 1.0 N aqueous HCl, and water again removed via azeotrope. The mixture was filtered and solvent removed. The amount of each ingredient is shown in Table 1 below. The final aminofunctional silicone resin composition, wt percent phenyl (Ph), wt percent R2SiO (D), wt percent Me2SiO (D(Me2)), mole percent amino (-CH2CH2CH2NH2), wt percent amine (-NH2), and -NH- (Amine H) equivalent weight are shown in Table 2 below.
  • 9
  • [ 3179-76-8 ]
  • [ 3027-21-2 ]
  • [ 2996-92-1 ]
  • poly(γ-aminopropyldiethoxymethylsilane-co-phenylmethyldimethoxysilane-co-phenyltrimethoxysilane) [ No CAS ]
YieldReaction ConditionsOperation in experiment
Arninofunctional Silicone Resins A1-A9 were prepared in the following manner. A mixture of phenyltrimethoxysilane, phenylmethyldimethoxysilane, gamma-aminopropyltriethoxysilane (APTES), and/or gamma-aminopropyldiethoxymethylsilane (APDEMS) was optionally dissolved in aromatic solvent and hydrolyzed with deionized water, followed by distillative removal of by-product alcohol. The resulting structure was optionally reacted with trimethylethoxysilane, hexamethyldisilazane (HMDZ), APDEMS and/or dimethyldimethoxysilane, additional solvent and additional water added, a catalytic amount of aqueous potassium hydroxide optionally added and the water removed via azeotrope. The hydroxide, if added, was neutralized with aqueous HCl or acetic acid, and water removed again via azeotrope. The mixture was filtered and solvent removed to yield silicone resin product. The amount of each ingredient is shown in Table 1 below. The final aminofunctional silicone resin composition, wt percent phenyl (Ph), wt percent R2SiO (D), wt percent Me2SiO (D(Me2)), mole percent amino (-CH2CH2CH2NH2), wt percent amine (-NH2), and -NH- (Amine H) equivalent weight are shown in Table 2 below.
  • 10
  • [ 3179-76-8 ]
  • [ 3027-21-2 ]
  • [ 2996-92-1 ]
  • poly(γ-aminopropyldiethoxymethylsilane-co-phenylmethyldimethoxysilane-co-phenyltrimethoxysilane) [ No CAS ]
YieldReaction ConditionsOperation in experiment
Arninofunctional Silicone Resins A1-A9 were prepared in the following manner. A mixture of phenyltrimethoxysilane, phenylmethyldimethoxysilane, gamma-aminopropyltriethoxysilane (APTES), and/or gamma-aminopropyldiethoxymethylsilane (APDEMS) was optionally dissolved in aromatic solvent and hydrolyzed with deionized water, followed by distillative removal of by-product alcohol. The resulting structure was optionally reacted with trimethylethoxysilane, hexamethyldisilazane (HMDZ), APDEMS and/or dimethyldimethoxysilane, additional solvent and additional water added, a catalytic amount of aqueous potassium hydroxide optionally added and the water removed via azeotrope. The hydroxide, if added, was neutralized with aqueous HCl or acetic acid, and water removed again via azeotrope. The mixture was filtered and solvent removed to yield silicone resin product. The amount of each ingredient is shown in Table 1 below. The final aminofunctional silicone resin composition, wt percent phenyl (Ph), wt percent R2SiO (D), wt percent Me2SiO (D(Me2)), mole percent amino (-CH2CH2CH2NH2), wt percent amine (-NH2), and -NH- (Amine H) equivalent weight are shown in Table 2 below.
  • 11
  • [ 1825-62-3 ]
  • [ 3179-76-8 ]
  • [ 3027-21-2 ]
  • [ 2996-92-1 ]
  • poly(γ-aminopropyldiethoxymethylsilane-co-phenylmethyldimethoxysilane-co-phenyltrimethoxysilane-co-trimethylethoxysilane) [ No CAS ]
YieldReaction ConditionsOperation in experiment
Aminofunctional Silicone Resin C1 was prepared in the following manner. A mixture (amounts in Table 1) of phenyltrimethoxysilane, phenylmethyldimethoxysilane, and gamma-aminopropyldiethoxymethylsilane (APDEMS) was optionally dissolved in xylenes and hydrolyzed with deionized water, followed by distillative removal of by-product alcohol. The resulting structure was reacted with trimethylethoxysilane, additional xylenes and additional water, followed by azeotropic removal of water. To a 177.0 gram portion of this reaction mixture, 19.3 grams of additional xylenes and 48.5 grams of colloidal silica dispersion (Ludox.(R). HS-40-220 m2/gm Grace Davison (Columbia, Md.)) were added and the water removed via azeotrope. The mixture was filtered and solvent removed to yield 110.6 grams of silicone resin product. The amount of each ingredient is shown in Table 1 below. The final aminofunctional silicone resin composition, wt percent phenyl (Ph), wt percent R2SiO (D), wt percent Me2SiO (D(Me2)), mole percent amino (-CH2CH2CH2NH2), wt percent amine (-NH2), and -NH- (Amine H) equivalent weight are shown in Table 2 below.
  • 12
  • [ 1825-62-3 ]
  • [ 3179-76-8 ]
  • [ 3027-21-2 ]
  • [ 2996-92-1 ]
  • poly(γ-aminopropyldiethoxymethylsilane-co-phenylmethyldimethoxysilane-co-phenyltrimethoxysilane-co-trimethylethoxysilane) [ No CAS ]
YieldReaction ConditionsOperation in experiment
Arninofunctional Silicone Resins A1-A9 were prepared in the following manner. A mixture of phenyltrimethoxysilane, phenylmethyldimethoxysilane, gamma-aminopropyltriethoxysilane (APTES), and/or gamma-aminopropyldiethoxymethylsilane (APDEMS) was optionally dissolved in aromatic solvent and hydrolyzed with deionized water, followed by distillative removal of by-product alcohol. The resulting structure was optionally reacted with trimethylethoxysilane, hexamethyldisilazane (HMDZ), APDEMS and/or dimethyldimethoxysilane, additional solvent and additional water added, a catalytic amount of aqueous potassium hydroxide optionally added and the water removed via azeotrope. The hydroxide, if added, was neutralized with aqueous HCl or acetic acid, and water removed again via azeotrope. The mixture was filtered and solvent removed to yield silicone resin product. The amount of each ingredient is shown in Table 1 below. The final aminofunctional silicone resin composition, wt percent phenyl (Ph), wt percent R2SiO (D), wt percent Me2SiO (D(Me2)), mole percent amino (-CH2CH2CH2NH2), wt percent amine (-NH2), and -NH- (Amine H) equivalent weight are shown in Table 2 below.
  • 13
  • [ 1825-62-3 ]
  • [ 3179-76-8 ]
  • [ 3027-21-2 ]
  • [ 2996-92-1 ]
  • poly(γ-aminopropyldiethoxymethylsilane-co-phenylmethyldimethoxysilane-co-phenyltrimethoxysilane-co-trimethylethoxysilane) [ No CAS ]
YieldReaction ConditionsOperation in experiment
Arninofunctional Silicone Resins A1-A9 were prepared in the following manner. A mixture of phenyltrimethoxysilane, phenylmethyldimethoxysilane, gamma-aminopropyltriethoxysilane (APTES), and/or gamma-aminopropyldiethoxymethylsilane (APDEMS) was optionally dissolved in aromatic solvent and hydrolyzed with deionized water, followed by distillative removal of by-product alcohol. The resulting structure was optionally reacted with trimethylethoxysilane, hexamethyldisilazane (HMDZ), APDEMS and/or dimethyldimethoxysilane, additional solvent and additional water added, a catalytic amount of aqueous potassium hydroxide optionally added and the water removed via azeotrope. The hydroxide, if added, was neutralized with aqueous HCl or acetic acid, and water removed again via azeotrope. The mixture was filtered and solvent removed to yield silicone resin product. The amount of each ingredient is shown in Table 1 below. The final aminofunctional silicone resin composition, wt percent phenyl (Ph), wt percent R2SiO (D), wt percent Me2SiO (D(Me2)), mole percent amino (-CH2CH2CH2NH2), wt percent amine (-NH2), and -NH- (Amine H) equivalent weight are shown in Table 2 below.
  • 14
  • [ 3179-76-8 ]
  • [ 17243-13-9 ]
  • [ 1211984-55-2 ]
Recommend Products
Same Skeleton Products

Technical Information

Historical Records
; ;