成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

Home Cart 0 Sign in  

[ CAS No. 301224-40-8 ] {[proInfo.proName]}

,{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]}
Chemical Structure| 301224-40-8
Chemical Structure| 301224-40-8
Structure of 301224-40-8 * Storage: {[proInfo.prStorage]}

Please Login or Create an Account to: See VIP prices and availability

Cart0 Add to My Favorites Add to My Favorites Bulk Inquiry Inquiry Add To Cart

Search after Editing

* Storage: {[proInfo.prStorage]}

* Shipping: {[proInfo.prShipping]}

Quality Control of [ 301224-40-8 ]

Related Doc. of [ 301224-40-8 ]

Alternatived Products of [ 301224-40-8 ]
Product Citations

Product Details of [ 301224-40-8 ]

CAS No. :301224-40-8 MDL No. :MFCD03701614
Formula : C31H38Cl2N2ORu Boiling Point : No data available
Linear Structure Formula :- InChI Key :ZRPFJAPZDXQHSM-UHFFFAOYSA-L
M.W : 626.62 Pubchem ID :11763533
Synonyms :

Calculated chemistry of [ 301224-40-8 ]      Expand+

Physicochemical Properties

Num. heavy atoms : 37
Num. arom. heavy atoms : 18
Fraction Csp3 : 0.35
Num. rotatable bonds : 5
Num. H-bond acceptors : 1.0
Num. H-bond donors : 0.0
Molar Refractivity : 167.55
TPSA : 15.71 ?2

Pharmacokinetics

GI absorption : Low
BBB permeant : No
P-gp substrate : Yes
CYP1A2 inhibitor : No
CYP2C19 inhibitor : No
CYP2C9 inhibitor : No
CYP2D6 inhibitor : No
CYP3A4 inhibitor : No
Log Kp (skin permeation) : -4.04 cm/s

Lipophilicity

Log Po/w (iLOGP) : 0.0
Log Po/w (XLOGP3) : 8.57
Log Po/w (WLOGP) : -0.08
Log Po/w (MLOGP) : 6.05
Log Po/w (SILICOS-IT) : 6.9
Consensus Log Po/w : 4.29

Druglikeness

Lipinski : 2.0
Ghose : None
Veber : 0.0
Egan : 0.0
Muegge : 2.0
Bioavailability Score : 0.17

Water Solubility

Log S (ESOL) : -9.15
Solubility : 0.000000439 mg/ml ; 0.0000000007 mol/l
Class : Poorly soluble
Log S (Ali) : -8.77
Solubility : 0.00000105 mg/ml ; 0.0000000017 mol/l
Class : Poorly soluble
Log S (SILICOS-IT) : -9.96
Solubility : 0.0000000695 mg/ml ; 0.0000000001 mol/l
Class : Poorly soluble

Medicinal Chemistry

PAINS : 0.0 alert
Brenk : 0.0 alert
Leadlikeness : 2.0
Synthetic accessibility : 4.35

Safety of [ 301224-40-8 ]

Signal Word:Warning Class:
Precautionary Statements:P261-P280-P305+P351+P338 UN#:
Hazard Statements:H302-H315-H319-H332-H335 Packing Group:
GHS Pictogram:

Application In Synthesis of [ 301224-40-8 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 301224-40-8 ]

[ 301224-40-8 ] Synthesis Path-Downstream   1~1

  • 1
  • [ 301224-40-8 ]
  • [ 773-76-2 ]
  • bis(κ2-(N,O)-5,7-dichloro-8-quinolinolate)-(2-isopropylbenzylidene)-(1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene)ruthenium [ No CAS ]
  • bis(κ2-(N,O)-5,7-dichloro-8-quinolinolate)-(2-isopropylbenzylidene)-(1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene)ruthenium [ No CAS ]
YieldReaction ConditionsOperation in experiment
28%; 57% With caesium carbonate; In dichloromethane; at 25℃; for 12h;Schlenk technique; Inert atmosphere; General procedure: In a Schlenk flask the corresponding starting material (1 equiv)was dissolved in degassed CH2Cl2. 5,7-Dihalide-8-hydroxyquinoline(20 equiv) and Cs2CO3 (20 equiv) were added. Thereaction mixture was stirred under an atmosphere of argon for12 h at 25 C. Insoluble components were removed by filtrationover celite. Column chromatography (silica gel) using cyclohexane/ethylacetate = 10/1 (v/v) yielded the correspondingcomplexes. The synthesis of the following Ru-based complexesbelongs to a patent application [63].
46.5 mg; 91 mg With caesium carbonate; In dichloromethane;Schlenk technique; Inert atmosphere; In a Schlenk flask, (H2IMes)Cl2Ru(CH-o-OiPrC6H4) (106 mg, 0.169 mmol, 1 eq) was dissolved in degassed CH2Cl2 (18 mL). <strong>[773-76-2]5,7-Dichloro-8-hydroxyquinoline</strong> (707 mg, 3.303 mmol, 19 eq) and Cs2CO3 (150 mg, 0.461 mmol, 16 eq) were added. The reaction mixture was stirred in a Schlenk flask under argon atmosphere overnight. (0099) The insoluble residue was filtered over celite. According to a TLC (CH/EE 5:1) two derivatives were formed. The products were separated via column chromatography (CH/EE 5:1) and fully characterized by NMR and crystal structure analysis. Yield=83% (46.5 mg 3 and 91 mg 4). (0100) 3: 1H-NMR (delta, 20 C., CDCl3, 300 MHz): 19.10 (s, 1H, Ru?CH), 8.09 (d J=4.04, 1H, CHhq), 7.95 (d J=8.56; j=1.43, 1H, CHhq), 7.68 (d J=8.43 j=1.30, 1H, CHPhq), 7.49 (s, 1H, CHhq), 7.17 (s, 1H, CHhq), 7.05 (m, 2H, CHhq), 6.56 (d J=8.04, 1H, CHhq), 6.48 (s, 2H, CHmes), 6.43 6,39 (?, 2H, CHph), 6.14 (s, 2H, CHmes), 6.06 (2H, CHhq+ph), 3.97 (5H, CH2+CHisoprop), 2.45 (s, 6H), 2.27 (s, 6H), 1.90 (s, 6H, CH31, 1?, 2, 2?, 3, 3?), 1.43 (d, 3H, CH3isoprop), 1.05 (d, 3H, CH3isoprop). (0101) 3: 13C-NMR (delta, 20 C., CDCl3, 75 MHz): 338.6 (1C, Ru?CH), 227.6 (1C, Ru-C), 162.6, 161.3, 149.7, 149.4, 149.0, 144.2, 143.2, 142.4, 142.3, 138.1 (Cq), 136.9 (Cq), 136.6 (Cq), 135.8 (Cq), 132.3 (CH), 131.7 (CH), 129.3 (CH), 129.2 (CH), 128.7, 127.7 (CH), 126.2, 125.8, 125.7, 122.2 (CH), 121.6 (CH), 121.0 (CH), 119.5 (CH), 118.9, 112.0, 109.2, 76.2 (1C, CHisoprop), 51.6 (2C, CH2-N), 23.1 (1C, CH3isoprop), 21.5 (1C, CH3isoprop), 20.8, 18.8, 18.5 (2C, CH3mes 7, 7?, 8, 8?, 9, 9?). (0102) 4: 1H-NMR (delta, 20 C., CDCl3, 300 MHz): 18.23 (bs, 1H, Ru?CH), 9.00 (d j=4.67 Hz, 1H, CHhq 1), 8.09 (d J=8.56 Hz, 1H, CHhq 3), 7.83 (d J=8.30 Hz, 1H, CHhq 3) 7.57 (s, 1H, CHhq 4 or 4), 7.12 (s, 1H, CHhq 4 or 4), 7.06 (q, 1H, CHhq 2), 6.94 (t, 1h; CHph 3 or 4), 6.59 (s, 2H, CHmes 3+3? or 5+5?), 6.39 (d, 1H, CHph 2 or 5), 6.26 (s, 2H, CHmes 3+3? or 5+5?), (d, 1H, CHph 2 or 5), (t, 1H, Chhq 2), 5.98 (t, 1H, CHph 3 or 4), 5.32 (d j=4.54 Hz, 1H, CHhq 1), 4.54 (m, 1H, CHisoprop), 3.92 (q, 4H, CH2mes), 2.57 (s, 6H), 2.04 (s, 6H), 1.91 (s, 6H, CH3mes 7, 7?, 8, 8?, 9, 9?), 1.53 (d, 3H, CH3isoprop), 1.31 (d, 3H, CH3isoprop). (0103) 13C-NMR (delta, 20 C., CDCl3, 75 MHz): Ru?C not observed, 209.5 (1C, Ru-C), 166.4 (Cq), 160.9 (Cq), 147.7 (Cq), 146.7 (Cq), 147.1 (Cq), 146.7 (Cq), 164.5 (CH), 146.5 (CH), 144.9 (Cq), 141.2 (CH), 137.1 (Cq), 137.0 (Cq), 136.7 (Cq), 136.5 (Cq), 119.3 (Cq), 125.8 (Cq), 132.7 (CH), 132.2 (CH), 129.2 (CH), 129.1 (2C, CH), 129.0 (CH), 128.6 (CH), 127.9 (CH), 126.4 (Cq), 120.7 (CH), 120.1 (CH), 119.7 (CH), 118.0 (Cq), 111.3 (Cq), 110.5 (CH), 106.4 (Cq), 68.7 (1C, CHisoprop) 51.7 (2C, CH2), 22.7, 22.3 (2C, CH3isoprop), 20.9, 18.9, 18.1 (6C, CH3mes 7, 7?, 8, 8?, 9?). (0104) Even if both of the catalysts possess two <strong>[773-76-2]5,7-dichloro-8-hydroxyquinoline</strong>s, they show different NMR patterns. The different structures were revealed by X-ray diffraction. The crystals for the X-ray diffraction measurement were obtained by slow diffusion of Et2O in a saturated solution of CH2Cl2. The two derivatives exhibit a different geometry considering the 8-quinolinolate substituents. In derivative 3, the oxygen atoms of the two quinolinolates are orientated trans to each other, while in derivative 4 these trans positions are occupied by an oxygen and a nitrogen atom of the two different quinolinolates.
Recommend Products
Same Skeleton Products
Historical Records
; ;