成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

Home Cart Sign in  
Chemical Structure| 2628-16-2 Chemical Structure| 2628-16-2

Structure of 2628-16-2

Chemical Structure| 2628-16-2

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

{[proInfo.proName]}

CAS No.: 2628-16-2

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 2628-16-2 ]

CAS No. :2628-16-2
Formula : C10H10O2
M.W : 162.19
SMILES Code : C=CC1=CC=C(OC(C)=O)C=C1
MDL No. :MFCD00075734
InChI Key :JAMNSIXSLVPNLC-UHFFFAOYSA-N
Pubchem ID :75821

Safety of [ 2628-16-2 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H317-H319
Precautionary Statements:P280-P305+P351+P338

Computational Chemistry of [ 2628-16-2 ] Show Less

Physicochemical Properties

Num. heavy atoms 12
Num. arom. heavy atoms 6
Fraction Csp3 0.1
Num. rotatable bonds 3
Num. H-bond acceptors 2.0
Num. H-bond donors 0.0
Molar Refractivity 48.03
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

26.3 ?2

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

2.26
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

2.52
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

2.15
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

2.47
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

2.5
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

2.38

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-2.61
Solubility 0.403 mg/ml ; 0.00248 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-2.72
Solubility 0.31 mg/ml ; 0.00191 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-2.91
Solubility 0.2 mg/ml ; 0.00123 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

Yes
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-5.5 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

1.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.42

Application In Synthesis of [ 2628-16-2 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 2628-16-2 ]

[ 2628-16-2 ] Synthesis Path-Downstream   1~12

  • 2
  • [ 2628-16-2 ]
  • [ 66996-59-6 ]
  • Acetic acid 4-[(E)-2-(5-bromo-6-methoxy-naphthalen-2-yl)-vinyl]-phenyl ester [ No CAS ]
  • 3
  • [ 2628-16-2 ]
  • [ 65938-77-4 ]
  • N-(5-methyl-2-pyridinesulfonyl)(4-acetyloxyphenyl)aziridine [ No CAS ]
  • 5
  • [ 2628-16-2 ]
  • [ 13031-43-1 ]
  • [ 99-93-4 ]
  • [ 53744-50-6 ]
YieldReaction ConditionsOperation in experiment
With acetic anhydride; In palladium-carbon; EXAMPLE 1 This example illustrates the preparation of 4-acetoxystyrene oxide from 4-acetoxystyrene under the invention, the latter compound having been prepared from 4-hydroxyacetophenone (4-HAP) as an intermediate. A solution of 136.2g (1.0 mol) of 4-hydroxyacetophenone and 400 ml of acetic anhydride was heated at reflux for 3 h under a nitrogen atmosphere. The acetic acid and acetic anhydride was distilled overhead in vacuo (30-41C, 2.6 mm Hg). The remaining oil was then distilled in vacuo (132-134C, 2.0 mm Hg) to yield 169.7g (95.2%) of white crystals identified as 4 -acetoxyacetophenone. 4-Acetoxyacetophenone (100.0 g, 0.56 mol) was hydrogenated in a Fluidtron Reactor with 5% Pd/C (3.94 g) at 100 psig. The hydrogenation was carried out at 60C for 5.25 hours. The reactor was depressurized and the catalyst removed via filtration to afford 1-(4--acetoxyphenyl)ethanol as an oil (93.6 g).
  • 6
  • [ 3939-23-9 ]
  • [ 2628-16-2 ]
  • [ 1256379-23-3 ]
  • 7
  • [ 3939-23-9 ]
  • [ 2628-16-2 ]
  • [ 1256379-27-7 ]
  • 8
  • [ 2628-16-2 ]
  • [ 35354-29-1 ]
  • [ 42206-94-0 ]
YieldReaction ConditionsOperation in experiment
With N-ethylmorpholine;; thionyl chloride;palladium diacetate; In ethyl acetate; N,N-dimethyl-formamide; toluene; (E)-3,4',5-Triacetoxystilbene 3,5-Diacetoxybenzoic acid (8.022 g, 33.706 mmol) suspended in a mixture of toluene (130 mL), DMF (500 μL) and thionyl chloride (16.00 mL, 220.6 mmol) was heated at 100 C. for three hours under an argon gas atmosphere. The solvents were removed by vacuum distillation and the residue re-suspended in toluene (85 mL) and sonicated under vacuum to remove dissolved gases. 4-Acetoxystyrene (5.74 mL, 37.5 mmol), N-ethylmorpholine (4.31 mL, 33.9 mmol) and palladium diacetate (35 mg, 0.16 mmol, 0.46 mole %) were added and the reaction heated to reflux for 2 hours. Further palladium diacetate (116 mg, 0.52 mmol, 1.54 mole %) was added and the reaction left to reflux overnight. On return to room temperature, ethyl acetate (500 mL) was added, the solution was washed with 0.1 M HCl (2*300 mL) and water (300 mL) and then dried and evaporated to return a brown solid. Purification with column chromatography (isocratically eluted with 2:1 Et2O/hexane) gave 7.888 g of a white solid, shown by 1H NMR to be predominantly the desired adduct. Further chromatography (gradient eluted starting with 4:1 hexane/EtOAc and finishing with 2:1 hexane/EtOAc) returned pure (E)-3,4',5-triacetoxystilbene (6.071 g, 51%) as a white solid. Rf 0.29 (2:1 hexane/EtOAc); mp 112.5-113.0 C. (lit mp 116 C.); (δC (CDCl3) 2.27 (s, 9H, 3*OAc), 6.80 (pseudo t, 1H, J 2.1, 4'-H), 6.93 (d, 1H, J 16.3, Htrans), 7.03 (d, 1H, J 16.3, Htrans), 7.04-7.09 (m, 4H, 3-H, 5-H, 2'-H, 6'-H) and 7.44-7.47 (m, 2H, 2-H, 6-H); δC(CDCl3) 20.07, 113.39, 115.88, 120.88, 126.19, 126.64, 128.64, 133.45, 138.53, 149.46, 150.34, 167.91 and 168.30; m/z (ESI) 377 (MNa+, 100%), 378 (21).
  • 9
  • [ 2628-16-2 ]
  • [ 69655-76-1 ]
  • C80H72O28Si8 [ No CAS ]
  • 10
  • [ 2628-16-2 ]
  • [ 5460-32-2 ]
  • [ 880354-47-2 ]
YieldReaction ConditionsOperation in experiment
With tetrabutylammomium bromide; potassium acetate; palladium diacetate; In N,N-dimethyl-formamide; at 80℃; for 5h;Inert atmosphere; Sealed tube; General procedure: To a solution of tetrabutylammonium bromide (1.100 g, 3.33 mmol), potassium acetate (0.586 g, 3.57 mmol), and palladium acetate (0.025 g, 0.11 mmol) in DMF (20 mL) were added substituted iodobenzene (2.21 mmol) and 4-acetyloxystyrene (2.44 mmol). The reaction mixture was recharged with Argon and stirred at 80C for 5 h in a sealed tube. The mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous NaCl and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate, 10:3) to afford the intermediate substituted (E)-4-styrylphenyl acetate. To a solution of triethylamine (2.0 mL) in MeOH (5 mL) was added substituted (E)-4-styrylphenyl acetate (1.36 mmol). The reaction mixture was stirred at reflux temperaturefor 3 h. The mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous NaCl and concentrated in vacuo. The residue was purified by column chromatography on silica gel (dichloromethane/methanol, 10:0.3) to afford pure product.
  • 11
  • [ 887144-97-0 ]
  • [ 29181-50-8 ]
  • [ 2628-16-2 ]
  • C17H13F3N2O2 [ No CAS ]
  • 12
  • [ 887144-97-0 ]
  • [ 7584-05-6 ]
  • [ 2628-16-2 ]
  • C17H16F3NO2 [ No CAS ]
 

Historical Records

Categories