成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

Home Cart Sign in  
Chemical Structure| 253-66-7 Chemical Structure| 253-66-7

Structure of 253-66-7

Chemical Structure| 253-66-7

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

{[proInfo.proName]}

CAS No.: 253-66-7

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations      Show More

Kurakami, Masaki ; Hakura, Atsushi ; Sato, Rika ; Kawade, Akihiro ; Yamagata, Takeshi ; Koyama, Naoki , et al.

Abstract: Background: Although the in silico predictive ability of the Ames test results has recently made remarkable progress, there are still some chemical classes for which the predictive ability is not yet sufcient due to a lack of Ames test data. These classes include simple heterocyclic compounds. This study aimed to investigate the mutagenicity and structure-mutagenicity relationships for some heterocycles in the Ames test. In the present study, we selected 12 quinoline analogues containing one or two nitrogen atoms in the naphthalene ring and 12 indole analogues containing one to three nitrogen atoms in the indole ring, without any side moiety. Results: The Ames test was performed with fve standard bacterial strains (TA100, TA1535, TA98, TA1537, and WP2uvrA) using the pre-incubation method with and without rat liver S9. Five quinoline and two indole analogues were mutagenic. Among the fve quinoline analogues, four were mutagenic in the presence of S9 mix with TA100, whereas cinnoline was mutagenic in the absence of S9 mix with TA1537. Among the two indole analogues, indazole was mutagenic in the presence and absence of S9 mix with WP2uvrA and 4-azaindole was mutagenic in the absence of S9 mix with TA1537. The mechanisms underlying the induction of mutagenesis appear to difer between quinoline and indole analogues. In addition, we performed in silico analysis of the mutagenicity of all these analogues using DEREK Nexus 6.1.1 (Lhasa Limited) and GT_EXPERT from CASE Ultra 1.8.0.5 (MultiCASE Inc.) as knowledge-based models and GT1_BMUT from CASE Ultra 1.8.0.5 (MultiCASE Inc.) as a statistical-based model. The knowledge-based model showed low sensitivity for both the quinoline and indole analogues (DEREK Nexus and GT_EXPERT: 20% for quinolines and 0% for indoles). Conversely, the statistical model showed high sensitivity (100% for both quinolines and indoles) and low specifcity (43% for quinolines and 10% for indoles). Conclusion: Based on the Ames test results, we proposed structural alerts noting that quinoline analogues were mutagenic when they had nitrogens in any of the positions 2, 5, 7, or 8 in addition to 1, and indole analogues were mutagenic when they had nitrogens at positions 2 or 4 in addition to 1.

Keywords: Ames test ; Mutagenicity ; Heterocyclic compounds ; Quinoline ; Indole ; Structure-mutagenicity relationship ; In silico

Purchased from AmBeed: ;

Matthew T. Fortunato ; Curtis E. Moore ; Claudia Turro ;

Abstract: A new series of Rh2(II,II) complexes with the formula cis-[Rh2(DTolF)2(bpnp)(L)]2+, where bpnp = 2,7-bis(2-pyridyl)-1,8-naphthyridine, DTolF = N,N′-di(p-tolyl) formamidinate, and L = pdz (pyridazine; 2), cinn (cinnoline; 3), and bncn (benzo[c]cinnoline; 4), were synthesized from the precursor cis-[Rh2(DTolF)2(bpnp)(CH3CN)2]2+ (1). The first reduction couple in 2–4 is localized on the bpnp ligand at approximately ?0.52 V vs Ag/AgCl in CH3CN (0.1 M TBAPF6), followed by reduction of the corresponding diazine ligand. Complex 1 exhibits a Rh2(δ*)/DTolF → bpnp(π*) metal/ligand-to-ligand charge-transfer (1ML-LCT) absorption with a maximum at 767 nm (ε = 1800 M–1 cm–1). This transition is also present in the spectra of 2–4, overlaid with the Rh2(δ*)/DTolF → L(π*) 1ML-LCT bands at 516 nm in 2 (L = pdz), 640 nm in 3 (L = cinn), and 721 nm in 4 (L = bncn). Complexes 2 and 3 exhibit Rh2(δ*)/DTolF → bpnp 3ML-LCT excited states with lifetimes, τ, of 3 and 5 ns, respectively, in CH3CN, whereas the lowest energy 3ML-LCT state in 4 is Rh2(δ*)/DTolF → bncn in nature with τ = 1 ns. Irradiation of 4 with 670 nm light in DMF in the presence of 0.1 M TsOH (p-toluene sulfonic acid) and 30 mM BNAH (1-benzyl-1,4-dihydronicotinamide) results in the production of H2 with a turnover number (TON) of 16 over 24 h. The axial capping of the Rh2(II,II) bimetallic core with the bpnp ligand prevents the formation of an Rh–H hydride intermediate. These results show that the observed photocatalytic reactivity is localized on the bncn ligand, representing the first example of ligand-centered H2 production.

Purchased from AmBeed: ; ; ; ;

Alternative Products

Product Details of [ 253-66-7 ]

CAS No. :253-66-7
Formula : C8H6N2
M.W : 130.15
SMILES Code : C1=CC=C2N=NC=CC2=C1
MDL No. :MFCD00006812
Boiling Point : No data available
InChI Key :WCZVZNOTHYJIEI-UHFFFAOYSA-N
Pubchem ID :9208

Safety of [ 253-66-7 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 253-66-7 ] Show Less

Physicochemical Properties

Num. heavy atoms 10
Num. arom. heavy atoms 10
Fraction Csp3 0.0
Num. rotatable bonds 0
Num. H-bond acceptors 2.0
Num. H-bond donors 0.0
Molar Refractivity 39.54
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

25.78 ?2

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

1.55
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

0.93
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

1.63
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

1.41
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

2.05
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.51

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-1.97
Solubility 1.39 mg/ml ; 0.0106 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-1.06
Solubility 11.4 mg/ml ; 0.0876 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-3.29
Solubility 0.0667 mg/ml ; 0.000513 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.43 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.24

Application In Synthesis of [ 253-66-7 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 253-66-7 ]
  • Downstream synthetic route of [ 253-66-7 ]

[ 253-66-7 ] Synthesis Path-Upstream   1~10

  • 1
  • [ 477909-61-8 ]
  • [ 253-66-7 ]
References: [1] Journal of the American Chemical Society, 2002, vol. 124, # 45, p. 13463 - 13473.
  • 2
  • [ 21905-86-2 ]
  • [ 253-66-7 ]
References: [1] Journal of the American Chemical Society, 1946, vol. 68, p. 1310,1311.
[2] Journal of the Chemical Society, 1951, p. 1971,1974.
  • 3
  • [ 615-43-0 ]
  • [ 253-66-7 ]
References: [1] Journal of the American Chemical Society, 2002, vol. 124, # 45, p. 13463 - 13473.
  • 4
  • [ 477909-60-7 ]
  • [ 253-66-7 ]
References: [1] Journal of the American Chemical Society, 2002, vol. 124, # 45, p. 13463 - 13473.
  • 5
  • [ 5339-08-2 ]
  • [ 253-66-7 ]
References: [1] European Journal of Organic Chemistry, 1999, # 2, p. 419 - 430.
  • 6
  • [ 22751-23-1 ]
  • [ 253-66-7 ]
References: [1] European Journal of Organic Chemistry, 1999, # 2, p. 419 - 430.
  • 7
  • [ 186966-01-8 ]
  • [ 253-66-7 ]
References: [1] European Journal of Organic Chemistry, 1999, # 2, p. 419 - 430.
  • 8
  • [ 5678-02-4 ]
  • [ 253-66-7 ]
  • [ 253-52-1 ]
  • [ 91-20-3 ]
  • [ 92-52-4 ]
References: [1] Heterocycles, 1982, vol. 19, # 8, p. 1427 - 1429.
  • 9
  • [ 7052-13-3 ]
  • [ 253-66-7 ]
References: [1] Chemische Berichte, 1897, vol. 30, p. 523.
  • 10
  • [ 18514-84-6 ]
  • [ 253-66-7 ]
References: [1] Journal of the Chemical Society, 1959, p. 2858,2861.
 

Historical Records

Categories

Similar Product of
[ 253-66-7 ]

Chemical Structure| 5949-24-6

A310934 [5949-24-6]

Cinnoline hydrochloride

Reason: Free-salt

Related Parent Nucleus of
[ 253-66-7 ]

Cinnolines

Chemical Structure| 5949-24-6

A310934 [5949-24-6]

Cinnoline hydrochloride

Similarity: 0.98

Chemical Structure| 78593-33-6

A197273 [78593-33-6]

3-Bromocinnoline

Similarity: 0.78

Chemical Structure| 318276-74-3

A124558 [318276-74-3]

Methyl cinnoline-6-carboxylate

Similarity: 0.68