成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

Home Cart Sign in  
Chemical Structure| 1732-08-7 Chemical Structure| 1732-08-7

Structure of Dimethyl pimelate
CAS No.: 1732-08-7

Chemical Structure| 1732-08-7

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

{[proInfo.proName]}

CAS No.: 1732-08-7

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 1732-08-7 ]

CAS No. :1732-08-7
Formula : C9H16O4
M.W : 188.22
SMILES Code : O=C(OC)CCCCCC(OC)=O
MDL No. :MFCD00008470
InChI Key :SHWINQXIGSEZAP-UHFFFAOYSA-N
Pubchem ID :74416

Safety of [ 1732-08-7 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 1732-08-7 ] Show Less

Physicochemical Properties

Num. heavy atoms 13
Num. arom. heavy atoms 0
Fraction Csp3 0.78
Num. rotatable bonds 8
Num. H-bond acceptors 4.0
Num. H-bond donors 0.0
Molar Refractivity 47.95
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

52.6 ?2

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

2.59
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

1.38
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

1.28
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

1.25
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

1.59
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.62

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-1.35
Solubility 8.44 mg/ml ; 0.0448 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-2.09
Solubility 1.54 mg/ml ; 0.00817 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-2.06
Solubility 1.64 mg/ml ; 0.00873 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.47 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

1.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<2.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.68

Application In Synthesis of [ 1732-08-7 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 1732-08-7 ]

[ 1732-08-7 ] Synthesis Path-Downstream   1~3

  • 1
  • [ 111-16-0 ]
  • [ 1732-08-7 ]
  • [ 20291-40-1 ]
YieldReaction ConditionsOperation in experiment
68% With hydrogenchloride; In methanol; ethyl acetate; A. Methyl hydrogen pimelate (7) A mixture of pimelic acid (15) (75.1 g, 0.47 mol), dimethyl pimelate (50.1 g, 0.27 mol), hydrochloric acid (8 mL, 0.1 mol), methanol (25 mL, 0.62 mol) and di-n-butyl ether (20 mL) was heated (oil bath: 100-110 C.) under N2 overnight. After cooling to room temperature, EtOAc (200 mL) was added and the mixture was washed with water (2*100 mL), saturated NaCl (2*100 mL) and dried (Na2 SO4). The crude oil was fractionally distilled (vigreux, 125-130 C., 0.7 mm Hg) to provide a clear oil (55.5 g, 68%, purity?95%. Based on NMR analysis, the clear oil was determined to be methyl hydrogen pimelate (7) (1 H NMR)): TLC (SiO2, MeOH/EtOAc/hexane (2:8:15, v/v)) Rf =0.25-0.34; 1 H NMR (300 MHz, CDCl3) δ3.67 (s, 3 H), 2.40-2.28 (m, 4 H), 1.72-1.58 (m, 4 H), 1.45-1.32 (m, 2 H).
  • 2
  • [ 1732-08-7 ]
  • [ 20291-40-1 ]
YieldReaction ConditionsOperation in experiment
40% General procedure: A solution of KOH (5.87 g, 104.65 mmol) in MeOH (150 ml) was added to dimethyl glutarate (13.15 g, 90 mmol), and the mixture was stirred for 4 h at rt. The solvent was then removed, and Et2O (100 ml) and H2O (200 ml) were added. The organic layer was separated, washed with brine, dried (MgSO4), and concentrated under reduced pressure to afford 3a as a yellow oil (4.61 g, 32%). The aqueous layer was acidified with concentrated HCl to pH 3, and extracted with Et2O (3 × 100 ml). The combined organic phase was washed with brine (3 × 100 ml) and dried (MgSO4). The solvent was removed to give a mixture of a white solid and an oil. Filtration and concentration in vacuum and purification with silica gel column chromatography gave 5.79 g (44%) of 4a as a colorless oil.
38% With potassium hydroxide; In methanol; at 0 - 20℃; for 4h; 5.1.2 7-Methoxy-7-oxoheptanoic acid (84) A solution of KOH (5.87 g, 104.65 mmol) in CH3OH (150 ml) was added dropwise to dimethyl heptanedioate 82 (16.94 g, 90 mmol) at 0 C. The reaction mixture was allowed to be stirred for 4 h at room temperature. After removal of the solvent under reduced pressure, Et2O (100 ml) and H2O (200 ml) were added and the organic phase was concentrated to give 82 as yellow oil (5.08 g, 30%). The aqueous phase was acidified to pH 3 by concentrated HCl and extracted with Et2O (100 ml * 3). The combined organic layer was washed with brine (100 ml * 3) and dried over MgSO4. The solvent was concentrated in vacuum. Filtration and purification with silica gel column chromatography gave 5.96 g (38%) of compound 84 as colorless oil. ESI-MS m/z: 173.3 [M-H]-; 1H NMR (DMSO-d6) δ 1.23-1.31 (m, 4H), 1.44-1.57 (m, 4H), 2.19 (t, J = 7.2 Hz, 2H), 2.29 (t, J = 7.2 Hz, 2H), 3.58 (s, 3H), 11.97 (s, 1H). The synthetic procedures of compounds 85 were the same as that described above.
  • 3
  • [ 67-56-1 ]
  • [ 111-16-0 ]
  • [ 1732-08-7 ]
  • [ 20291-40-1 ]
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 1732-08-7 ]

Aliphatic Chain Hydrocarbons

Chemical Structure| 3946-32-5

A119151 [3946-32-5]

8-Methoxy-8-oxooctanoic acid

Similarity: 1.00

Chemical Structure| 34957-73-8

A128201 [34957-73-8]

Methyl 9-hydroxynonanoate

Similarity: 1.00

Chemical Structure| 1732-09-8

A128898 [1732-09-8]

Dimethyl octanedioate

Similarity: 1.00

Chemical Structure| 1501-27-5

A159778 [1501-27-5]

5-Methoxy-5-oxopentanoic acid

Similarity: 1.00

Chemical Structure| 1731-92-6

A982976 [1731-92-6]

Methyl heptadecanoate

Similarity: 1.00

Esters

Chemical Structure| 3946-32-5

A119151 [3946-32-5]

8-Methoxy-8-oxooctanoic acid

Similarity: 1.00

Chemical Structure| 34957-73-8

A128201 [34957-73-8]

Methyl 9-hydroxynonanoate

Similarity: 1.00

Chemical Structure| 1732-09-8

A128898 [1732-09-8]

Dimethyl octanedioate

Similarity: 1.00

Chemical Structure| 1501-27-5

A159778 [1501-27-5]

5-Methoxy-5-oxopentanoic acid

Similarity: 1.00

Chemical Structure| 1731-92-6

A982976 [1731-92-6]

Methyl heptadecanoate

Similarity: 1.00

<i id="l8zib"><tr id="l8zib"><dfn id="l8zib"></dfn></tr></i><li id="l8zib"><label id="l8zib"></label></li>
  • <rp id="l8zib"><input id="l8zib"><xmp id="l8zib">
  • <form id="l8zib"></form>