成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

Home Cart Sign in  
HazMat Fee +

There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.

Type HazMat fee for 500 gram (Estimated)
Excepted Quantity USD 0.00
Limited Quantity USD 15-60
Inaccessible (Haz class 6.1), Domestic USD 80+
Inaccessible (Haz class 6.1), International USD 150+
Accessible (Haz class 3, 4, 5 or 8), Domestic USD 100+
Accessible (Haz class 3, 4, 5 or 8), International USD 200+
Chemical Structure| 1711-02-0 Chemical Structure| 1711-02-0
Chemical Structure| 1711-02-0

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

{[proInfo.proName]}

CAS No.: 1711-02-0

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support Online Technical Q&A
Product Citations

Alternative Products

Product Details of [ 1711-02-0 ]

CAS No. :1711-02-0
Formula : C7H4ClIO
M.W : 266.46
SMILES Code : O=C(Cl)C1=CC=C(I)C=C1
MDL No. :MFCD00001058
InChI Key :NJAKCIUOTIPYED-UHFFFAOYSA-N
Pubchem ID :74373

Safety of [ 1711-02-0 ]

GHS Pictogram:
Signal Word:Danger
Hazard Statements:H314
Precautionary Statements:P280-P305+P351+P338-P310
Class:8
UN#:3261
Packing Group:

Calculated chemistry of [ 1711-02-0 ] Show Less

Physicochemical Properties

Num. heavy atoms 10
Num. arom. heavy atoms 6
Fraction Csp3 0.0
Num. rotatable bonds 1
Num. H-bond acceptors 1.0
Num. H-bond donors 0.0
Molar Refractivity 49.34
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

17.07 ?2

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

2.07
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

4.0
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

2.67
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

2.94
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

3.3
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

3.0

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-4.39
Solubility 0.0109 mg/ml ; 0.0000407 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Moderately soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-4.06
Solubility 0.0232 mg/ml ; 0.000087 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Moderately soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-3.91
Solubility 0.0326 mg/ml ; 0.000122 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

Yes
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

Yes
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-5.09 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

2.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.77

Application In Synthesis of [ 1711-02-0 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 1711-02-0 ]

[ 1711-02-0 ] Synthesis Path-Downstream   1~7

  • 1
  • [ 1711-02-0 ]
  • [ 3469-20-3 ]
  • 3
  • [ 17672-21-8 ]
  • [ 1711-02-0 ]
  • C15H12INO4 [ No CAS ]
YieldReaction ConditionsOperation in experiment
With pyridine; dmap; In dichloromethane; at 20℃; Step A:; To a solution of methyl 3-hydroxyanthranilate (550 mg, 3.29 mmol) in methylene chloride (20 mL) was added 4-iodobenzoyl chloride (2.63 g, 9.87 mmol) followed by pyridine (1.06 mL, 13.2 mmol) and DMAP (40 mg, 0.33 mmol) at room temperature. The resulting mixture was stirred under nitrogen at room temperature overnight and then the reaction mixture was quenched with a saturated solution of sodium bicarbonate (100 mL) with stirring at room temperature for 30 min. The organic layer was separated and the aqueous layer was extracted with methylene chloride. The combined organic layers were washed with brine, dried over sodium sulfate, filtered and concentrated in vacuo. The residue was dissolved in toluene (20 mL) and the solution was treated with p-toluenesulfonic acid monohydrate (600 mg, 3.16 mmol). The reaction mixture was then heated at reflux under nitrogen overnight. The reaction mixture was cooled to room temperature, diluted with ethyl acetate, washed with a saturated solution of sodium bicarbonate and brine, dried over sodium sulfate, filtered and concentrated. The crude material was purified by column chromatography (silica gel, 4:1 hexanes/ethyl acetate) to afford the methyl ester (274 mg, 23%) as an off-white solid: 1H NMR (300 MHz, CDCl3) delta 8.10 (dt, J=8.5, 2.0 Hz, 2H), 8.07 (dd, J=8.0, 1.0 Hz, 1H), 7.92 (dt, J=8.5, 2.0 Hz, 2H), 7.81 (dd, J=8.0, 1.0 Hz, 1H), 7.47 (t, J=8.0 Hz, 1H), 4.09 (s, 3H); MS (ESI+) m/z 380 (M+H).
  • 4
  • [ 2040-90-6 ]
  • [ 1711-02-0 ]
  • [ 1443037-90-8 ]
YieldReaction ConditionsOperation in experiment
93% With triethylamine; In dichloromethane; at 0 - 20℃; for 3h; General procedure: 2-Chloro-6-fluoro phenol (1, 0.2054 mol) was dissolved in DCM, triethylamine (TEA, 0.4519 mol) was added and the reaction mixture was cooled to 0 °C. A solution of benzoyl chloride derivatives (2a-e, 0.2157 mol) in DCM was added slowly to the above mixture and stirred for 3 h. Then the reaction mass was diluted with DCM (200 mL), washed with 10percent sodium hydroxide solution (3 x 30 mL), water (3 x 30 mL), brine (2 x 60 mL), and again with water (3 x 30 mL). The organic layer was dried over sodium sulfate and the solvent was evaporated to achieve compounds 3a-e.
93% With triethylamine; In dichloromethane; at 0 - 20℃; for 3h; General procedure: 2-Chloro-6-fluoro phenol (1, 0.20 mol) was dissolved indichloro methane (DCM) and triethylamine (TEA, 0.45 mol) wasadded to it. Then the reaction mixture was cooled to 0 C. Further,a solution of substituted benzoyl chloride 2a?d (0.21 mol) in DCMwas slowly added to the reaction mixture and stirred for 3 h andthe completion of the reaction was monitored by TLC using 4:1n-hexane: ethyl acetate solvent mixture. Then the reaction masswas diluted with DCM (100 ml), washed with 10percent sodium hydroxidesolution (3 40 ml), followed by water (3 30 ml). Theorganic layer was dried over sodium sulphate and the solidobtained after evaporation of the solvent was recrystallized fromethanol to give compounds 3a?d. [21] Compound (3a) is taken asa representative example to explain physical and characterizationdata.
  • 5
  • [ 932738-80-2 ]
  • [ 1711-02-0 ]
  • 4-iodo-N-[4-(6-chloropyrimidin-4-yl)-1,3-thiazol-2-yl]-N-methylbenzamide [ No CAS ]
  • 7
  • [ 83079-77-0 ]
  • [ 1711-02-0 ]
  • (S)-tert-butyl 2-(4-iodobenzamido)-4-phenylbutanoate [ No CAS ]
YieldReaction ConditionsOperation in experiment
95% With triethylamine; In dichloromethane; at 20℃; for 4h; General procedure: To a solution of 4-iodobenzoyl chloride (5.6mmol, 1.0 eq.) in dichloromethane (30mL) was added triethylamine (22.4mmol, 4.0 eq.) and t-butyl ester of amino acid (5.6mmol, 1.0 eq.) respectively. The mixture was stirred at room temperature for 4h then diluted with dichloromethane (150mL). The organic phase washed with aqueous saturated NaHCO3 and aqueous 0.1N KHSO4, dried over MgSO4, filtered and evaporated. The crude product was purified by flash chromatography on silica gel (with a gradient in cyclohexane/ethyl acetate or CH2Cl2/MeOH) to afford the pure product.
 

Historical Records

Technical Information

Categories