Structure of 16066-91-4
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
-
+
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Elbatrawy, Ahmed A ; Ademoye, Taiwo A ; Alnakhala, Heba ; Tripathi, Arati ; Zhu, Xiongwei ; Plascencia-Villa, Germán , et al.
Abstract: Alzheimer’s (AD) and Parkinson’s (PD) disease are neurodegenerative disorders that are considered to be a significant global health challenge due to their increasing prevalence and profound impact on both individuals and society. These disorders are characterized by the progressive loss of neuronal function, leading to cognitive and motor impairments. A key pathological feature of AD and PD is the abnormal accumulation of misfolded proteins within the brain. In AD, amyloid-beta aggregates into plaques, while tau proteins form neurofibrillary tangles (NFTs). Parkinson’s disease, on the other hand, is marked by the accumulation of α-synuclein (α-syn) in the form of Lewy bodies (LBs). These protein aggregates are involved in neuronal dysfunction and neurodegeneration, contributing to disease progression. Research efforts are increasingly focused on identifying small molecules that can simultaneously target multiple pathological processes, offering the potential to not only alleviate symptoms but also modify the progression of neurodegeneration. Herein, a novel group of triazole-based compounds was designed and synthesized to curtail the aggregation of α-syn and tau proteins, which are closely linked to the physiopathology of PD and AD, respectively. A thioflavin T (ThT) fluorescence assay was used to measure fibril formation and assess the antiaggregation effects of various compounds. To further validate these findings, transmission electron microscopy (TEM) was employed as a direct method to visualize the impact of these compounds on fibril morphology. Inhibition of oligomer formation was evaluated using photoinduced cross-linking of unmodified proteins (PICUP), enabling the detection of early protein aggregation events. During fibril formation assays, three compounds (3e, 4b, 4d) demonstrated superior inhibitory activity as assessed by ThT fluorescence and TEM imaging. Subsequent evaluations, which included tests for antioligomer, anti-inclusion, and disaggregation effects identified compound 4d as the most promising candidate overall.
Show More >
CAS No. : | 16066-91-4 |
Formula : | C8H6IN |
M.W : | 243.04 |
SMILES Code : | IC1=CC2=C(NC=C2)C=C1 |
MDL No. : | MFCD00220065 |
InChI Key : | TVQLYTUWUQMGMP-UHFFFAOYSA-N |
Pubchem ID : | 2782313 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 10 |
Num. arom. heavy atoms | 9 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 0.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 51.02 |
TPSA ? Topological Polar Surface Area: Calculated from |
15.79 ?2 |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.82 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.7 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.77 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.46 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
3.54 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.66 |
Log S (ESOL):? ESOL: Topological method implemented from |
-3.71 |
Solubility | 0.047 mg/ml ; 0.000193 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.68 |
Solubility | 0.502 mg/ml ; 0.00207 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-4.24 |
Solubility | 0.014 mg/ml ; 0.0000577 mol/l |
Class? Solubility class: Log S scale |
Moderately soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.87 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.83 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
97% | With trichlorophosphate; at 0 - 40℃; for 1.5h; | General procedure: Phosphorus oxychloride (0.42 g, 2.74 mmol) was added dropwise to a solution of the indole 5b, 5e-5g (0.30 g, 2.29 mmol) in DMF (0.84 g, 11.4 mmol) at 0 C for 30 min. The solution was then heated at 40 C for 1 h. Ice was added to the reaction vessel, followed by a solution of sodium hydroxide (2 M). The solution was refluxed for 40 min. The mixture was cooled and extracted using ethyl acetate, and the organic phase was washed with brine. The organic extracts were combined, dried over Na2SO4, and concentrated. The crude residue was purified by chromatography on a silica gel column using hexane-ethyl acetate as an eluent to obtain the desired product [19]. |
77% | General procedure: Into a 25 mL tube, Ph3P (0.75 mmol, 1.5 equiv.), ICH2CH2I (0.75 mmol, 1.5 equiv.)indoles 1 (0.5 mmol, 1 equiv.), DMAP (0.5 mmol, 1 equiv.), and DMF (2 mL) wereadded under air atmosphere. The resulting mixture was stirred at 80 oC for 2 hours. H2O(5 mL) was added and stirred at 80 oC for another 2 hours. The mixture was cooled toroom temperature. A saturated aqueous brine solution was added, and the crude organicproduct was extracted by CH2Cl2. The combined organic phase was dried withanhydrous Na2SO4. After filtration, the solution was concentrated under reducedpressure to remove the solvent. The residue was subjected to flash columnchromatography on silica gel (pentane/ethyl acetate) to give the pure pro ducts 4j-4u. | |
48.27% | The starting reagent, 5-iodoindole-3-carboxaldehyde was prepared. Dimethylformamide (0.3602 g, 4.93 mmol) was reacted with phosphorus oxychloride (0.1908 g, 1.24 mmol) at 0 C. for 30 mm to produce an electrophilic iminium cation. After that 5-iodoin- dole (0.2978 g, 1.23 mmol) in DMF was added dropwise and stirred in an ice bath for 3 h. The reaction mixture was poured into ice-water, neutralized with iN NaOH, and lefi it overnight. Then, it was extracted with CH2C12, dried with MgSO4 anhydrous, and concentrated in vacuo before purification (50% EtOAc in hexane) to obtain orange solid (48.27%). Afier that the terminal alkyne product was prepared with the method described above and purified by column chromatography (20% EtOAc in hexane to EtOAc) to yield brown solid compound (38.21% over all steps). ‘H-NMR (400 MHz, CD3OD) ? 9.89 (s, 1H), 8.29 (s, 1H), 8.14 (s, 1H), 7.44 (d, J=8.4 Hz, 1H), 7.36 (d, J=8.5 Hz, 1H),3.38 (s, 1H). |
General procedure: Phosphorous oxychloride (2 mmol) was added dropwise to dimethylformamide (3 mL) cooled under ice-bath and allowed to stir for 30 min. A solution of indoles 4a-4h or azaindole 5 (1 mmol) in DMF (5 mL) was added dropwise for 5 min at 0 oC. The mixture was further allowed to stir for 3 h at 90-100 oC. Reaction mixture was cooled to room temperature and poured into crushed ice. Excess POCl3 was quenched with 1 N NaOH and left overnight at room temperature. Ice-cold reaction mixture was then extracted (50 mL × 3) with EtOAc. Combined organic layer was concentrated on rotary evaporator and crude products were purified by silica gel (No.100-200) column chromatography to get indole-3-carboxaldehydes 1a-1h or 6 in 60-80% yield. | ||
General procedure: Phosphorus oxychloride (0.86 mL) was added dropwise to dimethylformamide (1.0 mL) with ice-bath cooling. The chosen indoles (1.0 g) were added as a dimethylformamide solution for preparation of corresponding indolecarbaldehydes. The resulting mixture was stirred at room temperature for one hour. The reaction mixture was quenched with chilled water, followed by the addition of aq Sodium hydroxide solution and refluxed at 100 C for 15 min. The reaction mixture was cooled to room temperature and maintained at 0 C overnight. The precipitates formed were collected and washed with water. After this, the -NH groups of different indolecarbaldehydes were protected with methyl, tosyl, benzyl, or methylsulfonyl by using corresponding halogenides (1.5 equiv) under different basic conditions, such as sodium hydride (1.5 equiv) using acetonitrile as a solvent. Then, the reaction of resulting N-protected indolecarbaldehydes (1.0 g) with nitromethane (5 mL) in the presence of 30 mol % of ammonium acetate as the catalyst to furnish the desired indolylnitroalkenes.9 | ||
With trichlorophosphate; at 0 - 60℃; for 6.5h; | General procedure: A solution of indole (1.71 mmol) in dimethyl formamide (1 ml) was added to a cooled solutionof trichlorophosphate (1.88 mmol) in dimethyl formamide (1 ml) and stirred at room temperature for30 min and allowed to stir for 6 h at 60 C. The reaction mixture was allowed for cooling and pouredinto ice-cold water and added dropwise to an ice-cold solution of 2M NaOH. The suspension wasextracted with ethylacetate, the combined organic extract was concentrated to dryness to yield desiredindole-3-carboxaldehyde. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
70% | With perchloric acid adsorbed on silica gel; anthranilic acid amide; In acetonitrile; at 80℃; for 6h; | General procedure: Solid acid catalyst (50% w/w) was added to the solution of indole-3-carboxaldehydes 1a-1h or azaindole-3-carboxaldehyde 6 (1 mmol) and anthranilamide 2a (1 mmol) in acetonitrile (6 mL). The reaction mixture was allowed to stir for 6-24 h at room temperature or at reflux temperature. The progress of the reaction was monitored by TLC. After completion of the reaction, it was allowed to cool and catalyst was recovered by filtration. The filtrate was concentrated to get crude products which after silica gel (No.100-200) column chromatography gave deformylated products 4a-4h or 5 in 25-90% yield. |