成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

Home Cart Sign in  
Chemical Structure| 149-87-1 Chemical Structure| 149-87-1
Chemical Structure| 149-87-1

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

{[proInfo.proName]}

CAS No.: 149-87-1

,{[proInfo.pro_purity]}

N-DL-Pyr-OH can act as a hepatitis B surface inactivator, capable of inactivating vaccinia virus, herpes simplex virus, and influenza virus, but is ineffective against poliovirus.

Synonyms: DL-Pyroglutamic acid

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of N-DL-Pyr-OH

CAS No. :149-87-1
Formula : C5H7NO3
M.W : 129.11
SMILES Code : O=C(C(CC1)NC1=O)O
Synonyms :
DL-Pyroglutamic acid
MDL No. :MFCD00064322
InChI Key :ODHCTXKNWHHXJC-UHFFFAOYSA-N
Pubchem ID :499

Safety of N-DL-Pyr-OH

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Application In Synthesis of N-DL-Pyr-OH

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 149-87-1 ]

[ 149-87-1 ] Synthesis Path-Downstream   1~3

  • 1
  • [ 149-87-1 ]
  • [ 498-63-5 ]
YieldReaction ConditionsOperation in experiment
35% With phosphoric acid; ruthenium-carbon composite; hydrogen; In water; at 150℃; under 60006.0 Torr; for 21h; as a metal-supported catalyst, ruthenium carbon having a dispersity of 17.46percent, a metal surface area of 63.78 (m 2 / g), a particle diameter of 7.73 (nm), and a metal loading of 5percent A catalyst was prepared.In a pressure vessel, 100 g of water, 3.2 g of glutamic acid, 2.86 g of phosphoric acid and 0.16 g of ruthenium carbon catalyst were mixed. The mixture was stirred for 16 hours while pressurizing at 180 ° C. to a hydrogen pressure of 8 MPa. After completion of the reaction, the reaction mixture was filtered. When the components contained in the filtrate were analyzed by LC (liquid chromatography), prolinol was obtained in a yield of 35percent. Prolinol was synthesized under the same conditions as in Example 1. However, instead of glutamic acid, 2.8 g of pyroglutamic acid was used as a raw material. The reaction temperature was 150 ° C., and the reaction time was 21 hours. The yield of prolinol was 35percent.
  • 2
  • [ 108-82-7 ]
  • [ 149-87-1 ]
  • 5-Oxo-pyrrolidine-2-carboxylic acid 1-isobutyl-3-methyl-butyl ester [ No CAS ]
  • 3
  • [ 488-93-7 ]
  • [ 59-67-6 ]
  • [ 16874-33-2 ]
  • [ 88-14-2 ]
  • [ 98-97-5 ]
  • [ 21169-71-1 ]
  • [ 4100-13-4 ]
  • [ 3405-77-4 ]
  • [ 6973-60-0 ]
  • [ 5744-59-2 ]
  • [ 5521-55-1 ]
  • [ 636-44-2 ]
  • [ 13602-12-5 ]
  • C25H33N2O3Pol [ No CAS ]
  • C25H33N2O3Pol [ No CAS ]
  • [ 88-13-1 ]
  • [ 149-87-1 ]
  • furan-3-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-yl-methyl]-amide [ No CAS ]
  • furan-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • furan-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-amide [ No CAS ]
  • furan-3-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-amide [ No CAS ]
  • N-[4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-nicotin amide [ No CAS ]
  • pyrazine-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-amide [ No CAS ]
  • isoxazole-5-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • 1-methyl-1H-pyrrole-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • isoxazole-5-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-amide [ No CAS ]
  • thiophene-3-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-amide [ No CAS ]
  • N-[4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-nicotinamide [ No CAS ]
  • pyrazine-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • thiophene-3-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • 1-methyl-1H-pyrrole-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-amide [ No CAS ]
  • 5-methyl-isoxazole-3-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • 5-methyl-isoxazole-3-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-amide [ No CAS ]
  • 1,5-dimethyl-1H-pyrazole-3-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • 5-oxo-pyrrolidine-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • [1,2,3]-thiadazole-4-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • N-[4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-1-hydroxyisonicotin amide N-oxide [ No CAS ]
  • tetrahydro-furan-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • tetrahydro-furan-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-amide [ No CAS ]
  • 5-methyl-pyrazine-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • 2,5-dimethyl-furan-3-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • 2,5-dimethyl-furan-3-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-amide [ No CAS ]
YieldReaction ConditionsOperation in experiment
Compounds 41-70 were part of a parallel set prepared in library plate format according to General Procedure L, outlined below. ; L. General Procedure for Plate Preparation-Amide Formation XXI: Resin bound deprotected biarylphenol XVII (prepared from intermediate XII, boronates XIVd and XIVe, following general procedures D-F) was distributed into a 96 well plate, 10 mg of resin (0.013 mmol) per well. To the resin 400 mul of dichloromethane was added, followed by 100 mul of DIEA, followed by 0.13 mmol (10 equiv) of heterocyclic carboxylic acid XXa-XXn was added followed by 61 mg (0.13 mmol, 10 equiv) of PyBrop. The plate was shaken at room temperature for 24 hours, then drained and washed with dichloromethane, methanol/dichloromethane, dimethylformamide, methanol/dichloromethane and dichloromethane. The compounds were cleaved with TFA/dichloromethane (600 mul, 1:1) into a 96 deep well plate and submitted for testing without further purification. (Mass spec results obtained are shown in Table 4). Carboxylic Acids Het-COOH XX:
 

Historical Records

Categories