Purity | Size | Price | VIP Price | USA Stock *0-1 Day | Global Stock *5-7 Days | Quantity | ||||||
{[ item.p_purity ]} | {[ item.pr_size ]} | Inquiry |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price) ]} |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} | Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price) ]} | {[ item.pr_usastock ]} | in stock Inquiry - | {[ item.pr_chinastock ]} | {[ item.pr_remark ]} in stock Inquiry - | Login | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
Reservoir-Style Polymeric Drug Delivery Systems: Empirical and Predictive Models for Implant Design
Linying Li ; Chanhwa Lee ; Daniela F. Cruz , et al. Pharmaceuticals,2022,15(10):1226. DOI: 10.3390/ph15101226 PubMed ID: 36297338
More
Abstract: Controlled drug delivery systems can provide sustained release profiles, favorable pharmacokinetics, and improved patient adherence. Here, a reservoir-style implant comprising a biodegradable polymer, poly(ε-caprolactone) (PCL), was developed to deliver drugs subcutaneously. This work addresses a key challenge when designing these implantable drug delivery systems, namely the accurate prediction of drug release profiles when using different formulations or form factors of the implant. The ability to model and predict the release behavior of drugs from an implant based on their physicochemical properties enables rational design and optimization without extensive and laborious in vitro testing. By leveraging experimental observations, we propose a mathematical model that predicts the empirical parameters describing the drug diffusion and partitioning processes based on the physicochemical properties of the drug. We demonstrate that the model enables an adequate fit predicting empirical parameters close to experimental values for various drugs. The model was further used to predict the release performance of new drug formulations from the implant, which aligned with experimental results for implants exhibiting zero-order release kinetics. Thus, the proposed empirical models provide useful tools to inform the implant design to achieve a target release profile.
Keywords: empirical model ; implant ; long-acting drug delivery system ; poly(ε-caprolactone)
Purchased from AmBeed: 134678-17-4
CAS No. : | 134678-17-4 | MDL No. : | MFCD00869739 |
Formula : | C8H11N3O3S | Boiling Point : | - |
Linear Structure Formula : | - | InChI Key : | JTEGQNOMFQHVDC-NKWVEPMBSA-N |
M.W : | 229.26 | Pubchem ID : | 60825 |
Synonyms : |
BCH-189;3TC;Lamivudine, 3TC, Epivir, Zeffix, Heptovir, BCH-189;2’,3’-dideoxy-3’-Thiacytidine;(-)-BCH 189;GR109714X
|
Chemical Name : | 4-Amino-1-((2R,5S)-2-(hydroxymethyl)-1,3-oxathiolan-5-yl)pyrimidin-2(1H)-one |
Signal Word: | Warning | Class: | N/A |
Precautionary Statements: | P280-P305+P351+P338 | UN#: | N/A |
Hazard Statements: | H302 | Packing Group: | N/A |
GHS Pictogram: |
A1269626[ 1217746-03-6 ]
rel-4-amino-1-((2R,5S)-2-(hydroxymethyl)-1,3-oxathiolan-5-yl)pyrimidin-2(1H)-one-2-13C-1,3-15N2
Reason: Stable Isotope