Purity | Size | Price | VIP Price | USA Stock *0-1 Day | Global Stock *5-7 Days | Quantity | ||||||
{[ item.p_purity ]} | {[ item.pr_size ]} | Inquiry |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price) ]} |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} | Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price) ]} | {[ item.pr_usastock ]} | in stock Inquiry - | {[ item.pr_chinastock ]} | {[ item.pr_remark ]} in stock Inquiry - | Login | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
CAS No. : | 119139-23-0 | MDL No. : | |
Formula : | C20H13N3O2 | Boiling Point : | - |
Linear Structure Formula : | - | InChI Key : | DQYBRTASHMYDJG-UHFFFAOYSA-N |
M.W : | 327.34 | Pubchem ID : | 2399 |
Synonyms : |
Arcyriarubin A;BIM IV;Compound 5/1a
|
Chemical Name : | 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione |
Signal Word: | Warning | Class: | N/A |
Precautionary Statements: | P280 | UN#: | N/A |
Hazard Statements: | H302-H317 | Packing Group: | N/A |
GHS Pictogram: |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
70% | With palladium dichloride; In N,N-dimethyl-formamide; at 90℃; for 1h; | Example 1 12,13-(2,3-dihydroxy-butan-1,4-yl)-6,7,12,13-tetrahydro-5-oxo-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazole (Compound 14) Palladium dichloride (7.4 g, 41.6 mmoles) was added to a solution of acryrubin A Compound 1a (2.9 g, 8.86 mmol) (prepared as described in Faul M M, Winneroski L L and Krumrich C A, Journal of Organic Chemistry, 1998, 63, 6053-6058) in DMF (100 mL) at 90 C. The reaction temperature was kept at 90 C. for 1 hr. The mixture was cooled and conc. HCl (50 mL), then water (50 mL) was added. The mixture was poured over ice and the resulting precipitate was filtered off. The solids were washed with H2O and MeOH, then dissolved in THF (200 mL) and acetone (200 mL) and the remaining solids were filtered off. The solution was filtered through a plug of silica gel and the solvent was removed under vacuum. The resulting residue was diluted with MeOH, the solids were filtered and washed with MeOH then dried to provide acryflavin A Compound 1b (2 g, 70%) as a brown solid. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With LiAlH4; In tetrahydrofuran; methanol; diethyl ether; dichloromethane; water; | EXAMPLE 13 20 ml of a 1M solution of LiAlH4 in diethyl ether was added to a solution of 1.0 g of <strong>[119139-23-0]3,4-bis(3-indolyl)-1H-pyrrole-2,5-dione</strong> in 140 ml of THF. The mixture was stirred for 18 hours under nitrogen. The mixture was cooled to 0 C., quenched with 50 ml of water, then acidified to pH 2 with 2M hydrochloric acid and extracted with ethyl acetate. The organic extracts were washed with saturated sodium bicarbonate solution, dried and evaporated. The residue was purified on silica gel with 5-10% methanol in dichloromethane. The first product eluted was triturated with ethyl acetate/hexane to give 175 mg of 3,4-bis(3-indolyl)-3-pyrrolin-2-one, m.p. 290-293 C. (decomposition). The second product eluted was crystallized from ethyl acetate/chloroform to give 490 mg of 5-hydroxy-3,4-bis(3-indolyl)-3-pyrrolin-2-one, m.p. above 250 C. (decomposition). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
80.2% | A. Chemical Examples; Example 1; 3,4-Di-(1 H-indol-3-yl)pyrrole-2,5-dione (Compound 1); Potassium tert-butoxide (0.976 g, 8.7 mmol) was added to a stirred suspension of (1 H-indol-3-yl)acetamide (0.5 g, 2.8 mmol) and methyl 3-indolylglyoxylate (0.650, 3.15 mmol) in anhydrous tetrahydrofuran (15 ml), under argon at -10C. After 15 minutes the resultant dark red solution was allowed to warm to 20C over 3.5 hours. Concentrated hydrochloric acid (2ml) was added with cooling, and the orange-red precipitate then dissolved in ethyl acetate by stirring overnight. The organic phase was washed with water and brine, dried (magnesium sulphate) and evaporated to give the title compound as red crystals (0.780 g, 80.2% yield), mp 234C. 1H-NMR (DMSO-d6, No./ppm) : 11.6 (br s, 1 H), 10.95 (br s, 1 H), 7.68 (s, 1 H), 7.38 (d, 1 H), 6.98 (t, 1 H), 6.8 (d, 1 H), 6.6 (t, 1 H). | |
75% | With potassium tert-butylate; In tetrahydrofuran; at 0 - 20℃; for 4.5h;Inert atmosphere; | A three-necked flask equipped with a magnetic stirrer and two addition funnels was charged with indole (10.1 g, 0.086 mol) and 100 mL of diethyl ether. Oxalyl chloride (7.3 mL, 0.086 mol) was added dropwise to the solution at 0 C under nitrogen in 0.5 h. Yellow precipitate were formed and the reaction mixture was stirred for another 0.5 h. The reaction mixture was cooled to -70 C by dry-ice, then sodium methylate (25 % solution in methanol, 37.3 g, 0.173 mol) was added dropwise to the reaction mixture in 1 h. After that the reaction mixture was warmed to 0 C and 50 mL of water was added. The precipitate were filtered, washed with water several times, and then dried at 60 C under vacuum. The product of methyl indolyl-3- glyoxylate was obtained as a yellow powder and used without further purification. Yield 90 %. A three-necked flask equipped with a magnetic stirrer and an addition funnel was charged with 3-indoleacetamide (8.0 g, 0.046 mol), methyl indolyl-3-glyoxylate (10.0 g, 0.049 mol) and 80 mL of tetrahydrofuran. A solution of potassium tert-butoxide (15.2 g, 0.135 mol) in 130 mL of tetrahydrofuran was added dropwise to the reaction mixture at 0 C under nitrogen in 1.5 h. Then the reaction mixture was warmed to room temperature and stirred for 3 h. A solution of Hydrochloric acid (35 % in water, 64 mL) was added dropwise to the reaction mixture in 1 h. Then 200 mL of ethyl acetate and 100 mL of water were added and stirred for dissolving. The organic phase was separated, washed with water several times until neutral, and then washed with brine once, dried over anhydrous sodium sulfate. The sodium sulfate was filtered and the solution was concentrated. The product was crystallized by adding a 1:1 (v/v) mixture of ethyl acetate and n-hexane dropwise to the concentrated solution at 50~60 C. The pure product of 3,4-bisindolylmaleimide was obtained as a red crystal. |