Purity | Size | Price | VIP Price | USA Stock *0-1 Day | Global Stock *5-7 Days | Quantity | ||||||
{[ item.p_purity ]} | {[ item.pr_size ]} | Inquiry |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price) ]} |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} | Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price) ]} | {[ item.pr_usastock ]} | in stock Inquiry - | {[ item.pr_chinastock ]} | {[ item.pr_remark ]} in stock Inquiry - | Login | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
CAS No. : | 116611-64-4 | MDL No. : | MFCD00190885 |
Formula : | C21H19N3O4 | Boiling Point : | - |
Linear Structure Formula : | - | InChI Key : | SIRPVCUJLVXZPW-IBGZPJMESA-N |
M.W : | 377.39 | Pubchem ID : | 7019075 |
Synonyms : |
|
Chemical Name : | (S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-3-(1H-imidazol-4-yl)propanoic acid |
Signal Word: | Warning | Class: | N/A |
Precautionary Statements: | P261-P305+P351+P338 | UN#: | N/A |
Hazard Statements: | H302-H315-H319-H335 | Packing Group: | N/A |
GHS Pictogram: |
![]() |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Chelmical synthesis: Peptides were synthesized on a Rink amide resin, 0.45 mmol/g [Fmoc-Cys(Trityl)-Wang; Novabiochem, San Diego, Calif.] usinig N-(9-fluorenyl)methoxycarboxyl chemistry and standard side chain protection except on cysteine residues. Cysteine residues were protected in pairs with either S-trityl on the first and third cysteines or S-acetamidomethyl on the second and fourth cysteines. Amino acid derivatives were from Advanced Chemtech (Louisville, Ky.). The peptides were removed from the resin and precipitated, and a two-step oxidation protocol was used to selectively fold the peptides as described previously (Luo et al., 1999). Briefly, the first disulfide bridge was closed by dripping the peptide into an equal volume of 20 mM potassium feliicyanide and 0.1 M Tris, pH 7.5. The solution was allowed to react for 30 min, and the monocyclic peptide was purified by reverse-phase HPLC. Simultaneous removal of the S-acetamidomethyl groups and closure of the second disulfide bridge was carried out by iodine oxidation. The monocyclic peptide and HPLC eluent was dripped into an equal volume of iodine (10 mM) in H20/trifluoroacetic acid/acetonitrile (78:2:20 by volume) and allowed to react for 10 min. The reaction was terminated by the addition of ascorbic acid diluted 20-fold with 0.1percent trifluoroacetic acid and the bicyclic product purified by HPLC. Mass Spectrometry: Measurements were performed at the Salk Institute for Biological Studies (San Diego, Calif.) under the direction of Jean Rivier. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry and liquid secondary ionization mass spectrometry were used. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Peptide monomers of the present invention were synthesized using the Merrifield solid phase synthesis techniques on Protein Technology's Symphony multiple channel synthesizer. The peptides were assembled using HBTU (0-Benzotriazole-N,N,N',N'-tetramethyl-uronium- hexafluoro-phosphate), Diisopropylethylamine(DIEA) coupling conditions. For some amino acid couplings PyAOP(7-Azabenzotriazol- 1 -yloxy)tripyrrolidinophosponium hexafluorophosphate) and DIEA conditions were used. Rink Amide MB HA resin (100-200 mesh, 0.57 mmol/g) was used for peptide with C-terminal amides and pre-loaded Wang Resin with N-a-Fmoc protected amino acid was used for peptide with C-terminal acids. The coupling reagents (HBTU and DIEA premixed) were prepared at lOOmmol concentration. Similarly amino acids solutions were prepared at 100 mmol concentration. Peptide inhibitors of the present invention were identified based on medical chemistry optimization and/or phage display and screened to identify those having superior binding and/or inhibitory properties.[00611] The peptides were assembled using standard Symphony protocols. The peptide sequences were assembled as follows: Resin (250 mg, 0.14 mmol) in each reaction vial was washed twice with 4ml of DMF followed by treatment with 2.5ml of 20percent 4-methyl piped dine (Fmoc de- protection) for lOmin. The resin was then filtered and washed two times with DMF (4ml) and re -treated with N-methyl piperifine for additional 30 minute. The resin was again washed three times with DMF (4 ml) followed by addition 2.5ml of amino acid and 2.5ml of HBTU-DIEA mixture. After 45min of frequent agitations, the resin was filtered and washed three timed with DMF (4 ml each). For a typical peptide of the present invention, double couplings were performed. After completing the coupling reaction, the resin was washed three times with DMF (4 ml each) before proceeding to the next amino acid coupling. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Peptide monomers of the present invention were synthesized using the Merrifield solid phase synthesis techniques on Protein Technology's Symphony multiple channel synthesizer. The peptides were assembled using HBTU (0-Benzotriazole-N,N,N',N'-tetramethyl-uronium- hexafluoro-phosphate), Diisopropylethylamine(DIEA) coupling conditions. For some amino acid couplings PyAOP(7-Azabenzotriazol- 1 -yloxy)tripyrrolidinophosponium hexafluorophosphate) and DIEA conditions were used. Rink Amide MB HA resin (100-200 mesh, 0.57 mmol/g) was used for peptide with C-terminal amides and pre-loaded Wang Resin with N-a-Fmoc protected amino acid was used for peptide with C-terminal acids. The coupling reagents (HBTU and DIEA premixed) were prepared at lOOmmol concentration. Similarly amino acids solutions were prepared at 100 mmol concentration. Peptide inhibitors of the present invention were identified based on medical chemistry optimization and/or phage display and screened to identify those having superior binding and/or inhibitory properties.[00611] The peptides were assembled using standard Symphony protocols. The peptide sequences were assembled as follows: Resin (250 mg, 0.14 mmol) in each reaction vial was washed twice with 4ml of DMF followed by treatment with 2.5ml of 20percent 4-methyl piped dine (Fmoc de- protection) for lOmin. The resin was then filtered and washed two times with DMF (4ml) and re -treated with N-methyl piperifine for additional 30 minute. The resin was again washed three times with DMF (4 ml) followed by addition 2.5ml of amino acid and 2.5ml of HBTU-DIEA mixture. After 45min of frequent agitations, the resin was filtered and washed three timed with DMF (4 ml each). For a typical peptide of the present invention, double couplings were performed. After completing the coupling reaction, the resin was washed three times with DMF (4 ml each) before proceeding to the next amino acid coupling. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: tGLP-1 and its analogues 2?13 were all synthesized using general solid-phase peptide synthesis of N-Fmoc/tBu chemistry. 63Fmoc Rink Amide-MBHA resin (0.1 mmol) was added to a 25 ml peptide synthetic vessel and swollen with DMF for 40 min. After deprotected by 25percent piperidine in DMF, a solution of Fmoc-AA-OH (0.4 mmol), HATU (0.4 mmol), HoAt (0.4 mmol) and DIPEA (0.8 mmol) in DMF was added to the vessel. After reacted for 1 h, the resin was washed three times with DMF and three times with CH2Cl2, then qualitative ninhydrin testing was performed to monitor whether some free amino groups still existed on the resin ornot. If not, the resin was washed three times with DMF again and repeated the procedures of deprotection and coupling. Forthe coupling of some unnatural amino acids, NMM instead of DIPEA and NMP instead of DMF were used. Besides, the reaction time was prolonged to 4 h. Following the final deprotection of N-terminus, the target peptide was cleaved from resin with Reagent K (TFA/thioanisole/water/phenol/EDT, 82.5:5:5:5:2.5) for 2 h atroom temperature. After filtration, the residue solution was concentrated, precipitated with cold diethyl ether and centrifuged for three times. The residue was dissolved in water and purified by Waters 2545 preparative RP-HPLC system. Sephadex G-25 was used for the further purification to remove some short peptide impurities. The molecular mass of the target peptide was confirmed by MALDI-TOF. The purity of peptide was tested with analytical RP-HPLC, and the conditions were as follows: a linear gradient of 20percent mobile phase A and 80percent mobile phase B to 80percent mobile phase A and 20percent mobile phase B (A: acetonitrile containing 0.1percent TFA; B: H2O containing 0.1percent TFA) in 30 min, at a flow rate of 1 mL/minute with UV detection at 214 nm. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: tGLP-1 and its analogues 2-13 were all synthesized using general solid-phase peptide synthesis of N-Fmoc/tBu chemistry. 63Fmoc Rink Amide-MBHA resin (0.1 mmol) was added to a 25 ml peptide synthetic vessel and swollen with DMF for 40 min. After deprotected by 25% piperidine in DMF, a solution of Fmoc-AA-OH (0.4 mmol), HATU (0.4 mmol), HoAt (0.4 mmol) and DIPEA (0.8 mmol) in DMF was added to the vessel. After reacted for 1 h, the resin was washed three times with DMF and three times with CH2Cl2, then qualitative ninhydrin testing was performed to monitor whether some free amino groups still existed on the resin ornot. If not, the resin was washed three times with DMF again and repeated the procedures of deprotection and coupling. Forthe coupling of some unnatural amino acids, NMM instead of DIPEA and NMP instead of DMF were used. Besides, the reaction time was prolonged to 4 h. Following the final deprotection of N-terminus, the target peptide was cleaved from resin with Reagent K (TFA/thioanisole/water/phenol/EDT, 82.5:5:5:5:2.5) for 2 h atroom temperature. After filtration, the residue solution was concentrated, precipitated with cold diethyl ether and centrifuged for three times. The residue was dissolved in water and purified by Waters 2545 preparative RP-HPLC system. Sephadex G-25 was used for the further purification to remove some short peptide impurities. The molecular mass of the target peptide was confirmed by MALDI-TOF. The purity of peptide was tested with analytical RP-HPLC, and the conditions were as follows: a linear gradient of 20% mobile phase A and 80% mobile phase B to 80% mobile phase A and 20% mobile phase B (A: acetonitrile containing 0.1% TFA; B: H2O containing 0.1% TFA) in 30 min, at a flow rate of 1 mL/minute with UV detection at 214 nm. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Coupling of the First Protected Amino Acid Residue to the Resin 0.5 g of 2-chlorotritylchloride resin (100-200 mesh, copoly(styrene-1% DVB) polymer matrix, Cat. No. 01-64-0114, Novabiochem, Merck Biosciences Ltd.) (Barlos et al. Tetrahedron Lett. 1989, 30, 3943-3946) (1.4 mMol/g, 0.7 mmol) was filled into a dried flask. The resin was suspended in CH2Cl2 (2.5 ml) and, allowed to swell at room temperature under constant stirring for 30 min. The resin was treated with 0.49 mMol (0.7 eq) of the first suitably protected amino acid residue and 488 mul (4 eq) of diisopropylethylamine (DIEA) in CH2Cl2 (2.5 ml), the mixture was shaken at 25 C. for 4 hours. The resin was shaken (CH2Cl2/MeOH/DIEA: 17/2/1), 30 ml for 30 min; then washed in the following order with CH2Cl2 (1×), DMF (1×), CH2Cl2 (1×), MeOH (1×), CH2Cl2 (1×), MeOH (1×), CH2Cl2 (2×), Et2O (2×) and dried under vacuum for 6 hours. Loading was typically 0.6-0.9 mMol/g. The following preloaded resin was prepared: Fmoc-Pro-2-chlorotritylresin. Synthesis of the Fully Protected Peptide Fragment The synthesis was carried out on a Syro-peptide synthesizer (MultiSynTech GmbH) using 24 to 96 reaction vessels. In each vessel were placed approximately 60 mg (weight of the resin before loading) of the above resin. The following reaction cycles were programmed and carried out: Steps 3 to 6 are repeated to add each amino-acid. Analytical Method: Analytical HPLC retention times (RT, in minutes) were determined using a Jupiter Proteo 90 A column, 150×2.0 mm, (cod. 00E-4396-B0-Phenomenex) with the following solvents A (H2O+0.1% TFA) and B (CH3CN+0.1% TFA) and the gradient: 0 min: 95% A, 5% B; 0.5 min: 95% A, 5% B; 20 min: 40% A, 60% B; 21 min: 0% A, 100% B; 23 min: 0% A, 100% B; 23.1 min: 95% A, 5% B; 31 min: 95% A, 5% B. Formation of Disulfide beta-Strand Linkage After formation of the disulfide beta-strand linkage, the resin was suspended in 1 ml (0.14 mMol) of 1% TFA in CH2Cl2 (v/v) for 3 minutes and filtered, and the filtrate was neutralized with 1 ml (1.15 mMol) of 20% DIEA in CH2Cl2 (v/v). This procedure was repeated twice to ensure completion of the cleavage. The resin was washed three times with 1 ml of CH2Cl2. The CH2Cl2 layer was evaporated to dryness. The volatiles were removed and 8 ml dry DMF were added to the tube. Then 2 eq. of HATU in dry DMF (1 ml) and 4 eq. of DIPEA in dry DMF (1 ml) were added to the peptide, followed by stirring for 16 h. The volatiles were evaporated to dryness. The crude cyclised peptide was dissolved in 7 ml of CH2Cl2 and extracted with 10% acetonitrile in H2O (4.5 ml) three times. The CH2Cl2 layer was evaporated to dryness. To deprotect the peptide fully, 3 ml of cleavage cocktail TFA:TIS:H2O (95:2.5:2.5) were added, and the mixture was kept for 2.5 h. The volatiles were evaporated to dryness and the crude peptide was dissolved in 20% AcOH in water (7 ml) and extracted with isopropyl ether (4 ml) for three times. The aqueous layer was collected and evaporated to dryness, and the residue was purified by preparative reverse phase HPLC. After lyophilisation the products were obtained as white powders and analysed by the HPLC-ESI-MS analytical method described above. The analytical data comprising purity after preparative HPLC and ESI-MS are given. The peptide was synthesized starting with the amino acid L-Pro which was grafted to the resin. Starting resin was Fmoc-Pro-2-chlorotrityl resin, which was prepared as described above. The linear peptide was synthesized on solid support according to the procedure described above in the following sequence: Resin-Pro-DPro-Lys-Gln-Tyr-Cys-Tyr-Arg-Dab-DPro-Ala-Ser-Cys-Ala-His-Tyr. A disulfide beta-strand linkage was introduced as described above. The product was cleaved from the resin, cyclized, deprotected and purified as indicated by preparative reverse phase LC-MS. After lyophilisation the product was obtained as white powder and analysed by the HPLC-ESI-MS analytical method described above ([M+2H]2+: 933.1; RT: 10.47; UV-purity: 72%). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Coupling of the First Protected Amino Acid Residue to the Resin 0.5 g of 2-chlorotritylchloride resin (100-200 mesh, copoly(styrene-1% DVB) polymer matrix, Cat. No. 01-64-0114, Novabiochem, Merck Biosciences Ltd.) (Barlos et al. Tetrahedron Lett. 1989, 30, 3943-3946) (1.4 mMol/g, 0.7 mmol) was filled into a dried flask. The resin was suspended in CH2Cl2 (2.5 ml) and, allowed to swell at room temperature under constant stirring for 30 min. The resin was treated with 0.49 mMol (0.7 eq) of the first suitably protected amino acid residue and 488 mul (4 eq) of diisopropylethylamine (DIEA) in CH2Cl2 (2.5 ml), the mixture was shaken at 25 C. for 4 hours. The resin was shaken (CH2Cl2/MeOH/DIEA: 17/2/1), 30 ml for 30 min; then washed in the following order with CH2Cl2 (1×), DMF (1×), CH2Cl2 (1×), MeOH (1×), CH2Cl2 (1×), MeOH (1×), CH2Cl2 (2×), Et2O (2×) and dried under vacuum for 6 hours. Loading was typically 0.6-0.9 mMol/g. The following preloaded resin was prepared: Fmoc-Pro-2-chlorotritylresin. Synthesis of the Fully Protected Peptide Fragment The synthesis was carried out on a Syro-peptide synthesizer (MultiSynTech GmbH) using 24 to 96 reaction vessels. In each vessel were placed approximately 60 mg (weight of the resin before loading) of the above resin. The following reaction cycles were programmed and carried out: Steps 3 to 6 are repeated to add each amino-acid. Analytical Method: Analytical HPLC retention times (RT, in minutes) were determined using a Jupiter Proteo 90 A column, 150×2.0 mm, (cod. 00E-4396-B0-Phenomenex) with the following solvents A (H2O+0.1% TFA) and B (CH3CN+0.1% TFA) and the gradient: 0 min: 95% A, 5% B; 0.5 min: 95% A, 5% B; 20 min: 40% A, 60% B; 21 min: 0% A, 100% B; 23 min: 0% A, 100% B; 23.1 min: 95% A, 5% B; 31 min: 95% A, 5% B. Formation of Disulfide beta-Strand Linkage After formation of the disulfide beta-strand linkage, the resin was suspended in 1 ml (0.14 mMol) of 1% TFA in CH2Cl2 (v/v) for 3 minutes and filtered, and the filtrate was neutralized with 1 ml (1.15 mMol) of 20% DIEA in CH2Cl2 (v/v). This procedure was repeated twice to ensure completion of the cleavage. The resin was washed three times with 1 ml of CH2Cl2. The CH2Cl2 layer was evaporated to dryness. The volatiles were removed and 8 ml dry DMF were added to the tube. Then 2 eq. of HATU in dry DMF (1 ml) and 4 eq. of DIPEA in dry DMF (1 ml) were added to the peptide, followed by stirring for 16 h. The volatiles were evaporated to dryness. The crude cyclised peptide was dissolved in 7 ml of CH2Cl2 and extracted with 10% acetonitrile in H2O (4.5 ml) three times. The CH2Cl2 layer was evaporated to dryness. To deprotect the peptide fully, 3 ml of cleavage cocktail TFA:TIS:H2O (95:2.5:2.5) were added, and the mixture was kept for 2.5 h. The volatiles were evaporated to dryness and the crude peptide was dissolved in 20% AcOH in water (7 ml) and extracted with isopropyl ether (4 ml) for three times. The aqueous layer was collected and evaporated to dryness, and the residue was purified by preparative reverse phase HPLC. After lyophilisation the products were obtained as white powders and analysed by the HPLC-ESI-MS analytical method described above. The analytical data comprising purity after preparative HPLC and ESI-MS are given. The peptide was synthesized starting with the amino acid L-Pro which was grafted to the resin. Starting resin was Fmoc-Pro-2-chlorotrityl resin, which was prepared as described above. The linear peptide was synthesized on solid support according to the procedure described above in the following sequence: Resin-Pro-DPro-Lys-Gln-Tyr-Cys-Tyr-Arg-Dab-DPro-Ala-Ser-Cys-Tyr-His-Tyr. A disulfide beta-strand linkage was introduced as described above. The product was cleaved from the resin, cyclized, deprotected and purified as indicated by preparative reverse phase LC-MS. After lyophilisation the product was obtained as white powder and analysed by the HPLC-ESI-MS analytical method described above ([M+2H]2+: 978.6; RT: 10.95; UV-purity: 82%). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: Macrocycles were chemically synthesized using a Syro Wave automated peptide synthesizer (Biotage, Charlotte, NC) by Fmoc solid-phase peptide synthesis as previously described (Morimoto et al., Angew Chem. Int. Ed. Engl.51:3423-3427, 2012; Yamagata et al., Structure 22:345-352, 2012). Briefly, the chloroacetyl group or acetyl group was coupled onto the N-terminal amide group for the formation of cyclic or linear peptide analogs respectively after the automated synthesis. Peptides were cleaved by a solution of 92.5%trifluoroacetic acid (TFA), 2.5% water, 2.5% triisopropylsilane, and 2.5% ethanedithiol and precipitated by diethyl ether. To conduct the cyclization reaction, peptide pellet was dissolved in 10 mL DMSO/0.1%TFA in water (1:1), adjusted the pH>8 by addition of triethylamine and incubated for 1 h at 25C. This cyclization reaction was quenched by addition of TFA to acidify the peptide suspensions. Then peptides were purified by reverse-phase HPLC (RP-HPLC) and molecular masses were verified by MALDI-TOF mass spectrometry, using a microflex or ultraflex instrument (Bruker Daltonics, Billerica, MA) (FIG.5 and Table 2).All peptides were chemically synthesized on a 25 mumole scale using a Syro Wave automated peptide synthesizer (Biotage) by Fmoc solid phase peptide chemical synthesis (SPPS). Firstly, ^ ^ ^ ^ NovaPEG Rink Amide resins were incubated with N,N-dimethylformamide (DMF) with rotation at ambient temperature for 30 min and washed 5 times with DMF. Coupling of each Fmoc-protected amino acid was performed on the engorged resin with a solution of 300 muL 0.5 M Fmoc-protected amino acid, 300 muL 0.5 M 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) and 1-hydroxybenzotriazole (HOBt), and 150 muL 0.5 M N,N-diisopropylethylamine (DIPEA) in DMF and reacted for 1 hour at ambient temperature. After washing the resins with 1 mL DMF five times, Fmoc-deprotection was performed by incubating the resin with 600 muL 40% piperidine in DMF (vol/vol) and reacted for 30 min at ambient temperature. Each peptide was synthesized using the appropriately protected amino acid monomers corresponding to sequences in Tables 6 and 8 by repeating the Fmoc-protected amino acid coupling and Fmoc-deprotection steps accordingly. The N- terminal alpha-amino group of the synthesized peptides on the resin was chloroacetylated by incubating with a solution of 500 muL 0.5 M chloroacetyl N-hydroxysuccinimide (NHS) ester in N- methylpyrrolidone (NMP) with rotation for 60 min at ambient temperature. For the synthesis of Ce-L2 and Ce-L2d, the N-terminal alpha-amino group was acetylated by incubating with a solution of 500 muL 0.5 M acetic anhydride and 0.25 M DIPEA in NMP with rotation for 60 min at ambient temperature. After washing the resin with 5 x 1 mL DMF, peptides were fully deprotected and cleaved from resin by incubating with a solution of 2 mL trifluoroacetic acid (TFA), water, triisopropylsilane (TIS) and ethanedithiol (EDT) (92.5:2.5:2.5:2.5) with rotation for 3 hours at ambient temperature andprecipitated with diethyl ether. The peptide pellet was dissolved in 10 mL DMSO/0.1%TFA in water (1:1), and the pH adjusted to >8 by addition of triethylamine (TEA), and incubated at ambient temperature for 1 h to enhance the cyclization via a thioether bond formation between N-terminal chloroacetamide group and cysteine sulfhydryl group. Peptide mass and cyclization was confirmed by MALDI-TOF MS analysis. The cyclization reaction was quenched by addition of TFA to acidify the peptide suspensions. Peptides were then purified by reverse-phase HPLC (Table 4), molecular masses were verified by MALDI-TOF MS analysis (Table 4), using a microflex or autoflex instrument (Bruker Daltonics). Ring junction confirmed by MSMS spectrum and fragment analysis (FIG.5). |