*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 112245-13-3 |
Formula : | C6H15NO |
M.W : | 117.19 |
SMILES Code : | N[C@@H](C(C)(C)C)CO |
MDL No. : | MFCD00192250 |
InChI Key : | JBULSURVMXPBNA-RXMQYKEDSA-N |
Pubchem ID : | 2734079 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P264-P271-P280-P302+P352-P304+P340+P312-P305+P351+P338-P332+P313-P337+P313-P403+P233-P405-P501 |
Num. heavy atoms | 8 |
Num. arom. heavy atoms | 0 |
Fraction Csp3 | 1.0 |
Num. rotatable bonds | 2 |
Num. H-bond acceptors | 2.0 |
Num. H-bond donors | 2.0 |
Molar Refractivity | 34.57 |
TPSA ? Topological Polar Surface Area: Calculated from |
46.25 ?2 |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.51 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
0.39 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
0.35 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
0.61 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
0.04 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
0.58 |
Log S (ESOL):? ESOL: Topological method implemented from |
-0.68 |
Solubility | 24.5 mg/ml ; 0.209 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (Ali)? Ali: Topological method implemented from |
-0.93 |
Solubility | 13.9 mg/ml ; 0.118 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-0.56 |
Solubility | 32.5 mg/ml ; 0.277 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.74 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.07 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With lithium hydroxide; In n-heptane; at 100℃; for 3h;Reactivity (does not react); | Comparative Example 1; According to the same manner as that described in Example 3, the reaction did not proceed and (S)-tert-leucinol and dimethyl cyclopropanedicarboxylate, which are starting materials, were recovered except that lithium methoxide was not used in Example 3. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
93 - 95% | With lithium methanolate; In n-heptane; at 100℃; for 3h;Product distribution / selectivity; | Example 2; According to the same manner as that described in Example 1, 1.28 g of a white powder of N,N'-bis[(S)-1-tert-butyl-2-hydroxyethyl]cyclopropane-1,1-dicarboxamide was obtained except that 980 mg (8.36 mmol) of (S)-tert-leucinol, 655 mg (4.14 mmol) of <strong>[6914-71-2]dimethyl 1,1-cyclopropanedicarboxylate</strong> and 7.9 mg (0.21 mmol) of lithium methoxide were used as each reaction agent. Yield: 94percent (based on <strong>[6914-71-2]dimethyl 1,1-cyclopropanedicarboxylate</strong>). 1H-NMR (delta: ppm, CD3S(O)CD3 solvent, TMS standard) 7.76 (d, J=9.56 Hz, 2H), 4.58 (t, J=5.20 Hz, 2H.), 3.72 (dt, J=9.34 Hz, J=3.50 Hz, 2H), 3.63-3.57 (m, 2H), 3.41-3.34 (m, 2H), 1.29-1.23 (m, 2H), 1.10-1.05 (m, 2H), 0.82 (s, 18H); Example 7-2 <Synthesis of N,N'-bis[(S)-1-tert-butyl-2-hydroxyethyl]cyclopropane-1,1-dicarboxamide>; According to the same manner as that described in Example 2, 1.28 g of a white powder of N,N'-bis[(S)-1-tert-butyl-2-hydroxyethyl]cyclopropane-1,1-dicarboxamide was obtained except that 980 mg (8.36 mmol) of (S)-tert-leucinol obtained in Example 7-1 was used. Yield: 93percent (based on <strong>[6914-71-2]dimethyl 1,1-cyclopropanedicarboxylate</strong>).; Example 8-2 <Synthesis of N,N'-bis[(S)-1-tert-butyl-2-hydroxyethyl]cyclopropane-1,1-dicarboxamide>; According to the same manner as that described in Example 2, 3.39 g of a white powder of N,N'-bis[(S)-1-tert-butyl-2-hydroxyethyl]cyclopropane-1,1-dicarboxamide was obtained except that 2.55 g (21.8 mmol) of (S)-tert-leucinol obtained in Example 8-1, 1.72 g (10.9 mmol) of <strong>[6914-71-2]dimethyl 1,1-cyclopropanedicarboxylate</strong> and 20.7 mg (0.54 mmol) of lithium methoxide were used. Yield: 95percent (based on <strong>[6914-71-2]dimethyl 1,1-cyclopropanedicarboxylate</strong>). |
90% | With lithium hydroxide; In n-heptane; at 100℃; for 3h;Product distribution / selectivity; | Example 3; According to the same manner as that described in Example 2, 640 mg of a white powder of N,N'-bis[(S)-1-tert-butyl-2-hydroxyethyl]cyclopropane-1,1-dicarboxamide was obtained except that 507 mg (4.32 mmol) of (S)-tert-leucinol, 342 mg (2.16 mmol) of <strong>[6914-71-2]dimethyl 1,1-cyclopropanedicarboxylate</strong> and 4.5 mg (0.11 mmol) of lithium hydroxide monohydrate were used as each reaction agent. Yield: 90percent (based on <strong>[6914-71-2]dimethyl 1,1-cyclopropanedicarboxylate</strong>). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
79% | With sodium sulfate; In ethanol; for 16h;Reflux; | General procedure: Commercially available salicylaldehyde (1 mmol) and sodium sulfate(0.5 g) were added to a solution of (S)-tert-leucinol (1 mmol) or Lvalinol(1 mmol) in ethanol (20 mL). The reaction mixture was stirredunder reflux for 16 h, filtered, and concentrated under reducedpressure. The reaction mixture was then dissolved in dichloromethane(10 mL) and washed with water (3 × 10 mL) and brine (15 mL). Theorganic layer was dried and concentrated under reduced pressure toleave the crude product, which was purified by column chromatographyon silica gel (8:2 hexane/ethyl acetate) to yield the pure ligand. (S)-2-(N-3,5-Diiodosalicylidene)-amino-3,3-dimethyl-1-butanol(10, Table 4):.22,36 Yellow solid, 79%, mp 164-165 C (lit. mp163-164);22 1H NMR δH (300 MHz) 1.00 (9H, s), 2.53 (1H, brs),3.08 (1H, dd, J = 9.5 and 2.5 Hz), 3.68 (1H, dd, J = 11.1 and 9.8 Hz),3.93-4.07 (1H, brm), 7.51 (1H, d, J = 2.1 Hz), 8.01 (1H, d, J = 2.1Hz), 8.10 (1H, s); IR νmax/cm-1 (KBr) 3320, 2965, 1638, 1479, 1217,1060; [α]D20 = -18.5 (c 0.1, acetone), lit.22 [α]D20 = -16.6 (c 1.0 for S inacetone). |
A1372174 [352545-44-9]
(S)-2-Amino-3,3-dimethylbutan-1-ol hydrochloride
Reason: Free-salt