Purity | Size | Price | VIP Price | USA Stock *0-1 Day | Global Stock *5-7 Days | Quantity | ||||||
{[ item.p_purity ]} | {[ item.pr_size ]} | Inquiry |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price) ]} |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} | Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price) ]} | {[ item.pr_usastock ]} | in stock Inquiry - | {[ item.pr_chinastock ]} | {[ item.pr_remark ]} in stock Inquiry - | Login | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
CAS No. : | 110-15-6 | MDL No. : | MFCD00002789 |
Formula : | C4H6O4 | Boiling Point : | - |
Linear Structure Formula : | (CH2C(O)OH)2 | InChI Key : | - |
M.W : | 118.09 | Pubchem ID : | - |
Synonyms : |
Wormwood acid
|
Num. heavy atoms : | 8 |
Num. arom. heavy atoms : | 0 |
Fraction Csp3 : | 0.5 |
Num. rotatable bonds : | 3 |
Num. H-bond acceptors : | 4.0 |
Num. H-bond donors : | 2.0 |
Molar Refractivity : | 24.89 |
TPSA : | 74.6 ?2 |
GI absorption : | High |
BBB permeant : | No |
P-gp substrate : | No |
CYP1A2 inhibitor : | No |
CYP2C19 inhibitor : | No |
CYP2C9 inhibitor : | No |
CYP2D6 inhibitor : | No |
CYP3A4 inhibitor : | No |
Log Kp (skin permeation) : | -7.44 cm/s |
Log Po/w (iLOGP) : | 0.32 |
Log Po/w (XLOGP3) : | -0.59 |
Log Po/w (WLOGP) : | -0.06 |
Log Po/w (MLOGP) : | -0.54 |
Log Po/w (SILICOS-IT) : | -0.63 |
Consensus Log Po/w : | -0.3 |
Lipinski : | 0.0 |
Ghose : | None |
Veber : | 0.0 |
Egan : | 0.0 |
Muegge : | 2.0 |
Bioavailability Score : | 0.56 |
Log S (ESOL) : | 0.0 |
Solubility : | 117.0 mg/ml ; 0.994 mol/l |
Class : | Very soluble |
Log S (Ali) : | -0.51 |
Solubility : | 36.9 mg/ml ; 0.312 mol/l |
Class : | Very soluble |
Log S (SILICOS-IT) : | 0.61 |
Solubility : | 486.0 mg/ml ; 4.11 mol/l |
Class : | Soluble |
PAINS : | 0.0 alert |
Brenk : | 0.0 alert |
Leadlikeness : | 1.0 |
Synthetic accessibility : | 1.29 |
Signal Word: | Warning | Class: | N/A |
Precautionary Statements: | P264-P280-P337+P313-P305+P351+P338-P302+P352-P332+P313-P362 | UN#: | N/A |
Hazard Statements: | H315-H319 | Packing Group: | N/A |
GHS Pictogram: |
![]() |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
96% | In acetonitrile; at 50℃; | A reactor tube equipped with a magnetic spin bar was charged with <strong>[383432-38-0]E-2-Methoxy-N-(3-{4-[3-methyl-4-(6-methyl-pyridin-3-yloxy)-phenylamino]-quinazolin-6-yl}-allyl)-acetamide</strong> free base (2.0 g, 1 equivalent) and acetonitrile (10 mL). The mixture was heated to about 50 C. Succinic acid (1.00 g, 2 equivalents) were added to the mixture. The slurry was stirred at 50 C. overnight. Acetonitrile (5 mL) was added to the slurry and the mixture was stirred at about 50 C. overnight. The slurry was cooled to 20 C. and stirred overnight. The product was isolated by vacuum filtration and the product cake was covered with 5 mL of acetonitrile and held for about 5 minutes. The wash solvent was then separated from the product cake by vacuum filtration. The product was dried in a vacuum oven at 40-45 C. overnight to afford 1.33 grams of the sesquisuccinate complex in 96% yield. |
85% | In isopropyl alcohol; at 45 - 50℃; for 1h;Product distribution / selectivity; | A 50 mL round bottom flask equipped with a condenser, thermometer, and a magnetic spin bar for agitation was charged with <strong>[383432-38-0]E-2-Methoxy-N-(3-{4-[3-methyl-4-(6-methyl-pyridin-3-yloxy)-phenylamino]-quinazolin-6-yl}-allyl)-acetamide</strong> free base (2.0, 1.0 equiv.) and 2-propanol (20 mL). The mixture was heated to solution. A separate 75 mL reactor was charged with succinic acid (0.91 g, 1.8 equivalents) and 2-propanol (10 mL) and warmed to about 45 C. The free base solution was vacuum filtered to remove any solids and was added to the succinic acid solution over about 10 minutes. The resulting slurry was stirred at 45-50 C. for about 1 hour. The slurry was cooled to 20 C. and stirred overnight. The product was isolated by filtration and washed with 2-propanol. The product was dried in a vacuum oven at 30-40 C. for about 6 hours to afford the sesquisuccinate complex (2.34 g, 85% yield). A 50 mL round bottom flask with magnetic spin bar was charged with <strong>[383432-38-0]E-2-Methoxy-N-(3-{4-[3-methyl-4-(6-methyl-pyridin-3-yloxy)-phenylamino]-quinazolin-6-yl}-allyl)-acetamide</strong> free base (2.0, 1.0 equiv.) and 2-propanol (20 mL). The mixture was heated to solution. A separate 75 mL reactor was charged with succinic acid (0.91 g, 1.8 equivalents) and 2-propanol propanol (10 mL) and warmed to about 45 to 50 C. The free base solution was vacuum filtered to remove any solids and was added to the succinic acid solution over about 10 minutes. The resulting slurry was stirred at 45-50 C. for about 1 hour. The slurry was cooled to 20 C. and stirred overnight. The product was isolated by filtration and washed with 2-propanol. The product was dried in a vacuum oven at 30-40 C. for about 6 hours to afford the sesquisuccinate complex (2.34 g, 85% yield). |
85 - 90% | In water; acetone; at 42 - 58℃;Product distribution / selectivity; | A suitable clean, dry reaction vessel equipped with programmable linear temperature control system was charged with acetone (130 ml), water (14 ml), succinic acid (7.55 g, 3 eq.), and E-2-Methoxy-N-(3-{4-[3-methyl4-(6-methyl-pyridin-3-yloxy)-phenylamino]-quinazolin-6-yl}-allyl)-acetamide free base (10.0 g, 1 equivalent). The reaction mixture was heated to about 45-58 C. to yield a solution. Once the reaction mixture dissolved in solution, the temperature was adjusted to about 45 C. The solution was vacuum filtered into a suitable clean, dry, speck and fiber-free crystallization vessel. The crystallization vessel was maintained at a jacket temperature of about 50 C. in order to maintain the reaction vessel temperature at about 45 C. The reaction vessel was rinsed with about 20 ml acetone and pressure rinsed through the filter into the crystallization vessel. The reaction mixture was stirred and the temperature of the reaction vessel was adjusted to about 42-45 C. The reaction vessel was seeded with about 1% w/w sesquisuccinate complex. After initiating crystallization by seeding, the reaction mixture was stirred at about 35-45 C. for at least about 1 hour. The vessel was slowly cooled to about 5-20 C., preferably over about 4 hours. The reaction mixture was stirred at about 5-20 C. for about 18 hours. The sesquisuccinate complex was isolated by filtration on a BUchner style funnel, and the cake was washed with acetone at about 20 C. The sesquisuccinate complex was dried to a constant weight by air-drying or in a vacuum oven ranging from about 20-60 C. Sesquisuccinate complex yield: 85-90% w/w.; EXAMPLE 2 To a 500 gallon reactor, E-2-Methoxy-N-(3-{4-[3-methyl-4-(6-methyl-pyridin-3-yloxy)-phenylamino]-quinazolin-6-yl}-allyl)acetamide free base (32.1 kg), succinic acid (24.2 kg), Water (44.9 L), and Acetone (417 L) were added. The mixture was heated to 50 C. and held for 1 hr at 50 C. The solution was filtered to render is speck and fiber free. The solution was collected in second 500 gallon reactor held at about 50 C. The first reactor was rinsed with Acetone (64.2 L) and filtered forward to the speck and fiber free reactor. The solution was cooled to about 40-45 C. over about 30 minutes. Seed crystals of the sesquisuccinate complex (321 g) were added at about 40-45 C. The slurry was held for 2 hours at about 40 C. The slurry was then cooled over about 1 hour to 20 C. and held for about 30 minutes. This was followed by heating back to about 40 C. over one half hour and holding at 40 C. The slurry was cooled over 3 hours to about 35 C., followed by cooling over 2 hours to about 30 C., followed by cooling over 1 hour to 25 C. The slurry was then cooled over about 4 hours to about 0 C. and held at 0 C. for 1 hour. The product was isolated by filtration on a pressurized plate filter covered with a suitable cloth filter media. The product solids were washed with acetone (64.2 L). The product solids were dried for 24 hours at 40 to 50 C. to afford 38.0 kg of the sesquisuccinate complex.; EXAMPLE 9 A suitable clean, dry reaction vessel equipped with programmable linear temperature controls was charged with acetone (130 ml), water (14 ml), succinic acid (7.55 g, 3 eq.), and free base (10.0 g). The amount of succinic acid used in the reaction can range from about 1.5 to 3.5 equivalents. The reaction mixture was stirred at about 45-58 C. to yield a solution. The temperature can be elevated up to the reflux temperature of the solvent to yield a suitable solution. Once the reaction mixture dissolved in solution, the temperature was adjusted to about 45 C. (the temperature should not drop below 42 C.). The solution was filtered in vacuo into a suitable clean, dry, spec-free crystallization vessel. The crystallization vessel was maintained at a jacket temperature of about 50 C. in order to maintain the reaction vessel temperature at about 45 C. The reaction vessel was rinsed with about 20 ml acetone and pressure rinsed through the filter into the crystallization vessel. The reaction mixture was stirred and the temperature of the reaction vessel was adjusted to about 40-45 C. After crystallization begins, the reaction mixture was stirred at about 35-45 C. for at least about 1 hour. The vessel was slowly cooled to about 5-20 C. over about 4 hours. The reaction mixture was stirred at about 20 C. for 18 hours. The sesquisuccinate complex was isolated by filtration on a Buchner funnel, and the cake was washed with acetone. The sesquisuccinate complex was dried to a constant weight using a vacuum oven ranging from about 20-60 C. to afford the sesquisuccinate complex. |
83% | In tetrahydrofuran; at 50℃;Product distribution / selectivity; | A 50 mL reactor tube equipped with a magnetic spin bar was charged with <strong>[383432-38-0]E-2-Methoxy-N-(3-{4-[3-methyl-4-(6-methyl-pyridin-3-yloxy)-phenylamino]-quinazolin-6-yl}-allyl)-acetamide</strong> free base (1.0 g, 1 equivalent) and tetrahydrofuran (10 mL). The mixture was heated to about 50 C. Succinic acid (0.50 g, 2 equivalents) were added to the mixture to give a solution. The mixture was stirred at 50 C. overnight. The resulting slurry was cooled to 20 C. and stirred overnight. The product was isolated by vacuum filtration and the product cake was washed with 5 mL of tetrahydrofuran. The vacuum on the filtration was stopped. The product cake on the filter was covered with 10 mL of tetrahydrofuran and held for about 5 minutes. The wash solvent was separated from the product cake by vacuum filtration. After the wash solvent was removed from the cake, the vacuum was halted. The product cake on the filter was covered with 10 mL of tetrahydrofuan and held for about 5 minutes. The wash solvent was separated from the product cake by vacuum filtration. The product was dried in a vacuum oven at 40-45 C. overnight to afford 1.14 grams of the sesquisuccinate complex (83% yield). |
76% | In acetone; at 20 - 50℃;Product distribution / selectivity; | A 50 mL reactor tube equipped with a magnetic spin bar was charged with <strong>[383432-38-0]E-2-Methoxy-N-(3-{4-[3-methyl-4-(6-methyl-pyridin-3-yloxy)-phenylamino]-quinazolin-6-yl}-allyl)-acetamide</strong> free base (1.0 g, 1 equivalent) and acetone (10 mL). The mixture was heated to about 50 C. Succinic acid (0.50 g, 2 equivalents) were added to the mixture to give a solution. The mixture was stirred at 50 C. overnight. The resulting slurry was cooled to 20 C. and stirred overnight. The product was isolated by vacuum filtration and the product cake was washed with 5 mL of acetone. The vacuum on the filtration was stopped. The product cake on the filter was covered with 10 mL of acetone and held for about 5 minutes. The wash acetone was then separated from the product cake by vacuum filtration. After the wash solvent was removed from the cake, the vacuum was halted. The product cake on the filter was covered with 10 mL of acetone and held for about 5 minutes. The wash acetone was separated from the product cake by vacuum filtration. The product was dried in a vacuum oven at 40-45 C. overnight to afford 1.05 grams of the sesquisuccinate complex (76% yield). |
74% | In butan-1-ol; at 50℃; | A 50 mL reactor tube equipped with a magnetic spin bar was charged with E-2-Methoxy-N-(3{4-[3-methyl4-(6-methyl-pyridin-3-yloxy)-phenylamino]-quinazolin-6-yl{-allyl)-acetamide free base (1.0 g, 1 equivalent) and 1-butanol (15 mL). The mixture was heated to about 50 C. Succinic acid (0.50 g, 2 equivalents) were added to the mixture to give a solution. The mixture was stirred at 50 C. overnight to give a yellow slurry. The slurry was cooled to 25 C. and stirred overnight. The product was isolated by vacuum filtration and the product cake was washed with 5 mL of acetone. The vacuum on the filtration was stopped. The product cake on the filter was covered with 5 mL of 1-butanol and held for about 5 minutes. The wash solvent was then separated from the product cake by vacuum filtration. The product was dried in a vacuum oven at 40-45 C. overnight to afford 1.02 grams of the sesquisuccinate complex in 74% yield. |
In tetrahydrofuran; acetone; | To a solution of <strong>[383432-38-0]E-2-Methoxy-N-(3-{4-[3-methyl-4-(6-methyl-pyridin-3-yloxy)-phenylamino]-quinazolin-6-yl}-allyl)-acetamide</strong> in hot THF/acetone (5/100) two equivalents of succinic acid were added. Crystals slowly formed as the solution cooled. After slurrying overnight, the crystals were filtered and rinsed with acetone. The product was isolated as a white solid and verified as the sesquisuccinate complex of <strong>[383432-38-0]E-2-Methoxy-N-(3-{4-[3-methyl-4-(6-methyl-pyridin-3-yloxy)-phenylamino]-quinazolin-6-yl}-allyl)-acetamide</strong> by CHN analysis. Calculated: C=61.29, H=5.61, N=10.83, Experimental: C=61.04, H=5.61, N=10.85. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
19%; 10%; 35%; 20%; 8% | With dihydrogen peroxide;methyltrioxorhenium(VII); In dichloromethane; water; acetonitrile; at 20℃; | Comparative examples 1 to 3: Oxidation of 5-hydroxymethyl furfural in homogeneous conditions; 5-hydroxymethyl furfural (HMF) was oxidized with 10 equivalents of hydrogen peroxide (35percent by weight in aqueous solution) in the presence of methyltrioxo rhenium in an amount of 5percent by weight of HMF, at a temperature about 200C during 24 to 48 hours, until the conversion of furfural was complete, in various solvents. The results of the reactions are summarized in Table 1 below. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
23%; 6%; 11%; 16%; 29% | With dihydrogen peroxide;methyltrioxorhenium(VII); In ethanol; water; at 20℃; | Comparative examples 1 to 3: Oxidation of 5-hydroxymethyl furfural in homogeneous conditions; 5-hydroxymethyl furfural (HMF) was oxidized with 10 equivalents of hydrogen peroxide (35percent by weight in aqueous solution) in the presence of methyltrioxo rhenium in an amount of 5percent by weight of HMF, at a temperature about 200C during 24 to 48 hours, until the conversion of furfural was complete, in various solvents. The results of the reactions are summarized in Table 1 below. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
0.18 mg; 0.07 mg; 0.03 mg; 1.9 mg; 0.21 mg; 0.11 mg; 0.18 mg; 0.18 mg; 0.73 mg; 0.22 mg; 0.01 mg; 0.57 mg; 0.27 mg; 0.02 mg | With ferric sulfate nonahydrate; In water; at 80℃; for 24h;pH 7.57; | General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 muL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0% w/w) at 80 C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 muL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0% w/w ofthe corresponding salt?s pellet) at 80 C for 24 h. For the innerenvironment, NH2CHO (200 muL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0% w/w) at80 C for 24 h. The reaction of NH2CHO (10% v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 muL) at 60C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 C, detector temperature 280 C, gradient 100 C for 2min, and 10 C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98% compared to that of the reference standards.The analysis was limited to products of ?1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
0.16 mg; 0.02 mg; 0.009 mg; 0.096 mg; 0.38 mg; 0.9 mg; 0.15 mg; 0.015 mg; 0.13 mg | With ferric sulfate nonahydrate; at 80℃; for 24h;pH 12.0; | General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 muL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0% w/w) at 80 C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 muL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0% w/w ofthe corresponding salt?s pellet) at 80 C for 24 h. For the innerenvironment, NH2CHO (200 muL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0% w/w) at80 C for 24 h. The reaction of NH2CHO (10% v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 muL) at 60C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 C, detector temperature 280 C, gradient 100 C for 2min, and 10 C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98% compared to that of the reference standards.The analysis was limited to products of ?1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
0.11 mg; 0.005 mg; 0.0023 mg; 0.071 mg; 0.12 mg; 0.01 mg; 0.09 mg | With magnesium sulfate; at 80℃; for 24h;pH 12.0; | General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 muL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0% w/w) at 80 C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 muL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0% w/w ofthe corresponding salt?s pellet) at 80 C for 24 h. For the innerenvironment, NH2CHO (200 muL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0% w/w) at80 C for 24 h. The reaction of NH2CHO (10% v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 muL) at 60C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 C, detector temperature 280 C, gradient 100 C for 2min, and 10 C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98% compared to that of the reference standards.The analysis was limited to products of ?1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
0.17 mg; 0.05 mg; 0.03 mg; 1.8 mg; 0.17 mg; 0.11 mg; 0.15 mg; 0.12 mg; 0.7 mg; 0.23 mg; 0.01 mg; 0.53 mg; 0.23 mg | With magnesium sulfate; In water; at 80℃; for 24h;pH 7.57; | General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 muL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0% w/w) at 80 C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 muL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0% w/w ofthe corresponding salt?s pellet) at 80 C for 24 h. For the innerenvironment, NH2CHO (200 muL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0% w/w) at80 C for 24 h. The reaction of NH2CHO (10% v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 muL) at 60C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 C, detector temperature 280 C, gradient 100 C for 2min, and 10 C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98% compared to that of the reference standards.The analysis was limited to products of ?1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
0.63 g | In acetone; for 0.5h;Reflux; | To a mixture of 4-(piperidin-3-yl) aniline (Compound 16) (0.5 g) in acetone (5 mL), succinic acid (0.36 g) was charged at reflux temperature. The reaction mass was stirred at reflux temperature for 30 minute. The reaction mass was cooled to 20-25C and stirred further for 3 h. The solid obtained was filtered, washed with acetone (3 mL) and dried under vacuum at 50-55C to afford the titled compound (Yield: 0.63 g; HPLC Purity: >95.0% ). |
Tags: 110-15-6 synthesis path| 110-15-6 SDS| 110-15-6 COA| 110-15-6 purity| 110-15-6 application| 110-15-6 NMR| 110-15-6 COA| 110-15-6 structure
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :