Purity | Size | Price | VIP Price | USA Stock *0-1 Day | Global Stock *5-7 Days | Quantity | ||||||
{[ item.p_purity ]} | {[ item.pr_size ]} | Inquiry |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price) ]} |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} | Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price) ]} | {[ item.pr_usastock ]} | in stock Inquiry - | {[ item.pr_chinastock ]} | {[ item.pr_remark ]} in stock Inquiry - | Login | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
Cationic Peptides and Their Cu(II) and Ni(II) Complexes: Coordination and Biological Characteristics
Kotynia, Aleksandra ; Wiatrak, Benita ; Kamysz, Wojciech , et al. Int. J. Mol. Sci.,2021,22(21):12028. DOI: 10.3390/ijms222112028 PubMed ID: 34769458
More
Abstract: Antimicrobial peptides are a promising group of compounds used for the treatment of infections. In some cases, metal ions are essential to activate these mols. Examples of metalloantibiotics are, for instance, bleomycin and dermcidin. This study is focused on three new pseudopeptides with potential biol. activity. The coordination behavior of all ligands with Cu(II) and Ni(II) ions has been examined Various anal. methods such as potentiometric titration, UV-Vis and CD spectroscopies, and mass spectrometry were used. All compounds are convenient chelators for metal ion-binding. Two of the ligands tested have histidine residues. Surprisingly, imidazole nitrogen is not involved in the coordination of the metal ion. The N-terminal amino group, Dab side chains, and amide nitrogen atoms of the peptide bonds coordinated Cu(II) and Ni(II) in all the complexes formed. The cytotoxicity of three pseudopeptides and their complexes was evaluated. Moreover, their other model allowed for assessing the attenuation of LPS-induced cytotoxicity and anti-inflammatory activities were also evaluated, the results of which revealed to be very promising.
Keywords: Cu(II) complexes ; LPS-neutralization ; Ni(II) complexes ; anti-inflammatory ; cationic peptides ; potentiometric titration ; spectroscopic methods
Purchased from AmBeed: 109425-55-0
CAS No. : | 109425-55-0 | MDL No. : | MFCD00065668 |
Formula : | C25H30N2O6 | Boiling Point : | - |
Linear Structure Formula : | - | InChI Key : | JOOIZTMAHNLNHE-NRFANRHFSA-N |
M.W : | 454.52 | Pubchem ID : | 2756114 |
Synonyms : |
|
Signal Word: | Warning | Class: | N/A |
Precautionary Statements: | P261-P305+P351+P338 | UN#: | N/A |
Hazard Statements: | H302-H315-H319-H335 | Packing Group: | N/A |
GHS Pictogram: |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: In a reaction vessel, Fmoc-protected Rink amide MBHA resinwas first swelled in DMF for fifteen min. A solution of 20percent piperidinein DMF was added and mixture shaken mechanically for15 min resulting in the removal of Fmoc group. The required Fmocprotected amino acids and coupling reagent 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) were placed in amino acid vessels sequentially. DMF was added to theamino acid vessel, which was subsequently added (by positivepressure of N2) to the reaction vessel containing the resin, followedby addition of N,N-diisppropylethylamine (DIEA). After 3 h of mechanicalshaking at ambient temperature, the solvent was drainedand the resin washed with DMF (3 x 5 min) followed by methanol(2 x 5 mL). The cycles of deprotection and coupling were repeatedtill the desired peptide chain length was obtained. The resin-boundpeptide was transferred to a round bottom flask, and simultaneousremoval of resin and protective groups was achieved by using acocktail combination of TFA:triisopropylsilane (TIPS):H2O[95:2.5:2.5] for 3 h. The crude peptide was filtered and purified onpreparative HPLC system, and analyzed using solvent system ofCH3CN-H2O-0.1percent CF3COOH in the gradient system: 30 min gradient,30-100percent CH3CN-H2O-0.1percent CF3COOH at 215 nm. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: In a reaction vessel, Fmoc-protected Rink amide MBHA resinwas first swelled in DMF for fifteen min. A solution of 20percent piperidinein DMF was added and mixture shaken mechanically for15 min resulting in the removal of Fmoc group. The required Fmocprotected amino acids and coupling reagent 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) were placed in amino acid vessels sequentially. DMF was added to theamino acid vessel, which was subsequently added (by positivepressure of N2) to the reaction vessel containing the resin, followedby addition of N,N-diisppropylethylamine (DIEA). After 3 h of mechanicalshaking at ambient temperature, the solvent was drainedand the resin washed with DMF (3 x 5 min) followed by methanol(2 x 5 mL). The cycles of deprotection and coupling were repeatedtill the desired peptide chain length was obtained. The resin-boundpeptide was transferred to a round bottom flask, and simultaneousremoval of resin and protective groups was achieved by using acocktail combination of TFA:triisopropylsilane (TIPS):H2O[95:2.5:2.5] for 3 h. The crude peptide was filtered and purified onpreparative HPLC system, and analyzed using solvent system ofCH3CN-H2O-0.1percent CF3COOH in the gradient system: 30 min gradient,30-100percent CH3CN-H2O-0.1percent CF3COOH at 215 nm. |