Purity | Size | Price | VIP Price | USA Stock *0-1 Day | Global Stock *5-7 Days | Quantity | ||||||
{[ item.p_purity ]} | {[ item.pr_size ]} | Inquiry |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price) ]} |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} | Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price) ]} | {[ item.pr_usastock ]} | in stock Inquiry - | {[ item.pr_chinastock ]} | {[ item.pr_remark ]} in stock Inquiry - | Login | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
Abraha, Yuel W. ; Jacobs, Francois J. F. ; Brink, Alice , et al. J. Inorg. Organomet. P.,2023,33,2058-2074. DOI: 10.1007/s10904-023-02653-5
More
Abstract: Direct mixing (de novo) and Solvent Assisted Ligand Exchange (SALE) are the main methods used for the synthesis of Mixed-Linker Zeolitic Imidazolate Frameworks (ML-ZIFs). ML-ZIFs with combined -NO2 and -Br/-Cl functionalities were prepared via both synthetic routes. Thereafter the CO2 uptake of the ML-ZIFs were compared, as well as their abilities to fixate CO2 with epoxide substrates. The de novo synthesis resulted in ML-ZIFs with SOD topologies, 60: 40 (-NO2: -Br/-Cl) functionality ratios, higher porosities, better thermal stability and higher CO2 uptake than equivalent SALE products. SALE resulted in smaller ML-ZIF crystallites, only ~ 10% incorporation of -Br/-Cl functionalized imidazolate linkers, and phase change during activation. ML-ZIF-7Cl, obtained from direct mixing, resulted in the highest CO2 uptake (90 cm3 g-1), in line with its higher porosity. ML-ZIF-7Cl, in combination with tetrabutylammonium bromide (TBAB), showed a high catalytic activity (TOF of 446 h-1) for the fixation of CO2 with propylene oxide and was reusable for up to 4 cycles without loss in activity.
Keywords: Zeolitic imidazolate frameworks (ZIFs) ; Solvent assisted ligand exchange (SALE) ; De Novo synthesis ; CO2 uptake ; CO2 fixation
Purchased from AmBeed: 59061-53-9 ; 16681-56-4 ; 909531-29-9 ; 108-32-7 ; 16265-04-6 ; 2463-45-8 ; 4437-85-8
CAS No. : | 108-32-7 | MDL No. : | MFCD00005385 |
Formula : | C4H6O3 | Boiling Point : | - |
Linear Structure Formula : | O(C3H3O2)CH3 | InChI Key : | RUOJZAUFBMNUDX-UHFFFAOYSA-N |
M.W : | 102.09 | Pubchem ID : | 7924 |
Synonyms : |
|
Signal Word: | Warning | Class: | N/A |
Precautionary Statements: | P264-P280-P302+P352-P337+P313-P305+P351+P338-P362+P364-P332+P313 | UN#: | N/A |
Hazard Statements: | H315-H319 | Packing Group: | N/A |
GHS Pictogram: |
![]() |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
54.8% | at 130℃; for 8 h; Autoclave; High pressure | General procedure: The one-step synthesis of DMC from carbon dioxide, epoxides and methanol was carried out in a sealed Teflon-lined stainless steel high pressure autoclave with inner volume of 50mL provided with a magnetic stirrer and an electric heater. Typical conditions and procedures are described as follows: a certain amount of methanol, propylene oxide (PO), catalyst and cocatalyst were added into the above autoclave. Alkali halides were used as catalysts, several typical crown ethers (i.e., [2,4],-dibenzo-18-crown-6 (DBC), 18-crown-6, 15-crown-5 and 12-crown-4) were used as cocatalysts, and polyethylene glycol (MW=4000, abbreviated as PEG4000) was used as comparison for the crown ether. Then CO2 (gas, > 99.99percent) was injected up to a certain pressure at room temperature. The autoclave was heated to a certain temperature and the mixture was stirred at that temperature for several hours. After the reaction, the autoclave was cooled to about 10°C with ice-water mixture and then depressurized. The liquid reaction mixture was analyzed by gas chromatograph (GC 2060) equipped with a capillary column (HP-INNOWAX, 30m×0.32mm×0.25μm) and flame ionization detector (FID) using n-butyl alcohol as an internal standard, and further identified by gas chromatography-mass spectrometry (Agilent 7890-5975C) by comparing retention times and fragmentation patterns with authentic samples. The temperature of the GC column was set at 60°C for 3min and then was programmed to rise to 80°C at the rate of 5°Cmin?1, and further reached 220°C at the rate of 30°Cmin?1 and remained at that temperature for 3min. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
13.2% | at 130℃; for 8 h; Autoclave; High pressure | General procedure: The one-step synthesis of DMC from carbon dioxide, epoxides and methanol was carried out in a sealed Teflon-lined stainless steel high pressure autoclave with inner volume of 50mL provided with a magnetic stirrer and an electric heater. Typical conditions and procedures are described as follows: a certain amount of methanol, propylene oxide (PO), catalyst and cocatalyst were added into the above autoclave. Alkali halides were used as catalysts, several typical crown ethers (i.e., [2,4],-dibenzo-18-crown-6 (DBC), 18-crown-6, 15-crown-5 and 12-crown-4) were used as cocatalysts, and polyethylene glycol (MW=4000, abbreviated as PEG4000) was used as comparison for the crown ether. Then CO2 (gas, > 99.99percent) was injected up to a certain pressure at room temperature. The autoclave was heated to a certain temperature and the mixture was stirred at that temperature for several hours. After the reaction, the autoclave was cooled to about 10°C with ice-water mixture and then depressurized. The liquid reaction mixture was analyzed by gas chromatograph (GC 2060) equipped with a capillary column (HP-INNOWAX, 30m×0.32mm×0.25μm) and flame ionization detector (FID) using n-butyl alcohol as an internal standard, and further identified by gas chromatography-mass spectrometry (Agilent 7890-5975C) by comparing retention times and fragmentation patterns with authentic samples. The temperature of the GC column was set at 60°C for 3min and then was programmed to rise to 80°C at the rate of 5°Cmin?1, and further reached 220°C at the rate of 30°Cmin?1 and remained at that temperature for 3min. |
12.5% | at 130℃; for 8 h; Autoclave; High pressure | General procedure: The one-step synthesis of DMC from carbon dioxide, epoxides and methanol was carried out in a sealed Teflon-lined stainless steel high pressure autoclave with inner volume of 50mL provided with a magnetic stirrer and an electric heater. Typical conditions and procedures are described as follows: a certain amount of methanol, propylene oxide (PO), catalyst and cocatalyst were added into the above autoclave. Alkali halides were used as catalysts, several typical crown ethers (i.e., [2,4],-dibenzo-18-crown-6 (DBC), 18-crown-6, 15-crown-5 and 12-crown-4) were used as cocatalysts, and polyethylene glycol (MW=4000, abbreviated as PEG4000) was used as comparison for the crown ether. Then CO2 (gas, > 99.99percent) was injected up to a certain pressure at room temperature. The autoclave was heated to a certain temperature and the mixture was stirred at that temperature for several hours. After the reaction, the autoclave was cooled to about 10°C with ice-water mixture and then depressurized. The liquid reaction mixture was analyzed by gas chromatograph (GC 2060) equipped with a capillary column (HP-INNOWAX, 30m×0.32mm×0.25μm) and flame ionization detector (FID) using n-butyl alcohol as an internal standard, and further identified by gas chromatography-mass spectrometry (Agilent 7890-5975C) by comparing retention times and fragmentation patterns with authentic samples. The temperature of the GC column was set at 60°C for 3min and then was programmed to rise to 80°C at the rate of 5°Cmin?1, and further reached 220°C at the rate of 30°Cmin?1 and remained at that temperature for 3min. |
5.8% | at 130℃; for 8 h; Autoclave; High pressure | General procedure: The one-step synthesis of DMC from carbon dioxide, epoxides and methanol was carried out in a sealed Teflon-lined stainless steel high pressure autoclave with inner volume of 50mL provided with a magnetic stirrer and an electric heater. Typical conditions and procedures are described as follows: a certain amount of methanol, propylene oxide (PO), catalyst and cocatalyst were added into the above autoclave. Alkali halides were used as catalysts, several typical crown ethers (i.e., [2,4],-dibenzo-18-crown-6 (DBC), 18-crown-6, 15-crown-5 and 12-crown-4) were used as cocatalysts, and polyethylene glycol (MW=4000, abbreviated as PEG4000) was used as comparison for the crown ether. Then CO2 (gas, > 99.99percent) was injected up to a certain pressure at room temperature. The autoclave was heated to a certain temperature and the mixture was stirred at that temperature for several hours. After the reaction, the autoclave was cooled to about 10°C with ice-water mixture and then depressurized. The liquid reaction mixture was analyzed by gas chromatograph (GC 2060) equipped with a capillary column (HP-INNOWAX, 30m×0.32mm×0.25μm) and flame ionization detector (FID) using n-butyl alcohol as an internal standard, and further identified by gas chromatography-mass spectrometry (Agilent 7890-5975C) by comparing retention times and fragmentation patterns with authentic samples. The temperature of the GC column was set at 60°C for 3min and then was programmed to rise to 80°C at the rate of 5°Cmin?1, and further reached 220°C at the rate of 30°Cmin?1 and remained at that temperature for 3min. |
23% | at 130℃; for 8 h; Autoclave; High pressure | General procedure: The one-step synthesis of DMC from carbon dioxide, epoxides and methanol was carried out in a sealed Teflon-lined stainless steel high pressure autoclave with inner volume of 50mL provided with a magnetic stirrer and an electric heater. Typical conditions and procedures are described as follows: a certain amount of methanol, propylene oxide (PO), catalyst and cocatalyst were added into the above autoclave. Alkali halides were used as catalysts, several typical crown ethers (i.e., [2,4],-dibenzo-18-crown-6 (DBC), 18-crown-6, 15-crown-5 and 12-crown-4) were used as cocatalysts, and polyethylene glycol (MW=4000, abbreviated as PEG4000) was used as comparison for the crown ether. Then CO2 (gas, > 99.99percent) was injected up to a certain pressure at room temperature. The autoclave was heated to a certain temperature and the mixture was stirred at that temperature for several hours. After the reaction, the autoclave was cooled to about 10°C with ice-water mixture and then depressurized. The liquid reaction mixture was analyzed by gas chromatograph (GC 2060) equipped with a capillary column (HP-INNOWAX, 30m×0.32mm×0.25μm) and flame ionization detector (FID) using n-butyl alcohol as an internal standard, and further identified by gas chromatography-mass spectrometry (Agilent 7890-5975C) by comparing retention times and fragmentation patterns with authentic samples. The temperature of the GC column was set at 60°C for 3min and then was programmed to rise to 80°C at the rate of 5°Cmin?1, and further reached 220°C at the rate of 30°Cmin?1 and remained at that temperature for 3min. |
7.8% | at 130℃; for 8 h; Autoclave; High pressure | General procedure: The one-step synthesis of DMC from carbon dioxide, epoxides and methanol was carried out in a sealed Teflon-lined stainless steel high pressure autoclave with inner volume of 50mL provided with a magnetic stirrer and an electric heater. Typical conditions and procedures are described as follows: a certain amount of methanol, propylene oxide (PO), catalyst and cocatalyst were added into the above autoclave. Alkali halides were used as catalysts, several typical crown ethers (i.e., [2,4],-dibenzo-18-crown-6 (DBC), 18-crown-6, 15-crown-5 and 12-crown-4) were used as cocatalysts, and polyethylene glycol (MW=4000, abbreviated as PEG4000) was used as comparison for the crown ether. Then CO2 (gas, > 99.99percent) was injected up to a certain pressure at room temperature. The autoclave was heated to a certain temperature and the mixture was stirred at that temperature for several hours. After the reaction, the autoclave was cooled to about 10°C with ice-water mixture and then depressurized. The liquid reaction mixture was analyzed by gas chromatograph (GC 2060) equipped with a capillary column (HP-INNOWAX, 30m×0.32mm×0.25μm) and flame ionization detector (FID) using n-butyl alcohol as an internal standard, and further identified by gas chromatography-mass spectrometry (Agilent 7890-5975C) by comparing retention times and fragmentation patterns with authentic samples. The temperature of the GC column was set at 60°C for 3min and then was programmed to rise to 80°C at the rate of 5°Cmin?1, and further reached 220°C at the rate of 30°Cmin?1 and remained at that temperature for 3min. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
52.4% | at 130℃; for 8 h; Autoclave; High pressure | General procedure: The one-step synthesis of DMC from carbon dioxide, epoxides and methanol was carried out in a sealed Teflon-lined stainless steel high pressure autoclave with inner volume of 50mL provided with a magnetic stirrer and an electric heater. Typical conditions and procedures are described as follows: a certain amount of methanol, propylene oxide (PO), catalyst and cocatalyst were added into the above autoclave. Alkali halides were used as catalysts, several typical crown ethers (i.e., [2,4],-dibenzo-18-crown-6 (DBC), 18-crown-6, 15-crown-5 and 12-crown-4) were used as cocatalysts, and polyethylene glycol (MW=4000, abbreviated as PEG4000) was used as comparison for the crown ether. Then CO2 (gas, > 99.99percent) was injected up to a certain pressure at room temperature. The autoclave was heated to a certain temperature and the mixture was stirred at that temperature for several hours. After the reaction, the autoclave was cooled to about 10°C with ice-water mixture and then depressurized. The liquid reaction mixture was analyzed by gas chromatograph (GC 2060) equipped with a capillary column (HP-INNOWAX, 30m×0.32mm×0.25μm) and flame ionization detector (FID) using n-butyl alcohol as an internal standard, and further identified by gas chromatography-mass spectrometry (Agilent 7890-5975C) by comparing retention times and fragmentation patterns with authentic samples. The temperature of the GC column was set at 60°C for 3min and then was programmed to rise to 80°C at the rate of 5°Cmin?1, and further reached 220°C at the rate of 30°Cmin?1 and remained at that temperature for 3min. |