成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

Home Cart 0 Sign in  

[ CAS No. 102390-98-7 ] {[proInfo.proName]}

,{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]}
Chemical Structure| 102390-98-7
Chemical Structure| 102390-98-7
Structure of 102390-98-7 * Storage: {[proInfo.prStorage]}

Please Login or Create an Account to: See VIP prices and availability

Cart0 Add to My Favorites Add to My Favorites Bulk Inquiry Inquiry Add To Cart

Search after Editing

* Storage: {[proInfo.prStorage]}

* Shipping: {[proInfo.prShipping]}

Quality Control of [ 102390-98-7 ]

Related Doc. of [ 102390-98-7 ]

Alternatived Products of [ 102390-98-7 ]
Product Citations

Product Citations      Expand+

Cory Blake Sims ;

Abstract: The development of hybrid organosilicon materials as both rapid curing coatings and photo-responsive sponges has been conducted utilizing silsesquioxane (SQ) based chemistries for the robustness they provide in the final materials. Additional research was conducted on the formation of sulfur-based SQ analogs. Chapter I will provide background about the synthesis of silsesquioxanes, their properties, and the favorability for three-dimensional material formation using these molecules. Additional information will include challenges and histories of siloxane based protective coatings and the use of both photo-radical and photo-acid-generating initiators in them, along with a brief explanation of photo-switches, specifically azobenzene and its derivatives and their use in sol-gels. Chapter II will discuss protective coatings for monuments and the specific needs associated with these materials. A history of the types of materials used and their faults will detail the desire for new materials aimed at this application. The development of a coating with three distinct curing methods (including photo-radical and photo-acid generating processes) which forms a protective layer with a mixture of partially formed polisilsesquioxane and oligosilsesquioxane structures as the backbone of the network. Findings and properties of the resulting coating formulations, modifiability, and alternative functionalities will be discussed in detail. Chapter III will discuss the use of photo-switches as crosslinkers in silicon-based networks. Previous work utilized Q-type silsesquioxanes (Q8M8H) and 4,4’-diallyloxyazobenzene (DAA) to develop photodynamic sponges. The modification process of these sponge materials, through both in-situ and post-polymerization functionalization, will be described. The effects on solvent preference resulting from the modifications will describe “sponge” uptake and swell-ability in various environmental pollutants. Chapter IV discusses the synthesis, characterization, and overall performance of an analog Q8M8H sponge system using 4,4’-divinylazobenzne (DVA), in place of 4,4’-diallyloxyazobenzene. Analysis of the resulting changes in swelling efficiency and solvent preference will be provided. Chapter V will describe the investigation into new species of organosilicon compounds. This chapter will detail early work on synthesizing novel silicon-sulfur silsesquioxane analogs, including the methods, challenges, and findings in this underdeveloped field. Chapter VI will provide an overview of the results, findings, and lessons learned through the research above.

Purchased from AmBeed: ;

Cory B. Sims ; Chamika U. Lenora ; Joseph C. Furgal , et al. DOI:

Abstract: A coating system integrating three distinct chemistries was developed to protect materials used in monuments and construction. Initial curing is achieved using a UV-initiated thiol-ene reaction to form a non-impressionable/non-sticky surface. Second, amine/epoxy reactions form a firm surface adhesion and give mechanical strength through consolidation. Third, alkoxysilane sol-gel curing integrates the siloxane network while adding thermal stability, hydrophobicity, and a hardened surface. The final design utilizes a photoacid generator to increase the reaction speed of the second and third curing steps. The coating can be applied by spray, dip, or wipe on methods and exhibits a rapid non-impressionable surface (as fast as 10 min) that resists graffiti and environmental conditions, and is used and stored as a single-component system with a pot life exceeding six months. A series of experiments were used to determine the coating properties and durability, including field testing and accelerated weathering.

Keywords: tri-cure ; coating ; monument preservation ; rapid cure ; no mix ; long pot life

Purchased from AmBeed:

Product Details of [ 102390-98-7 ]

CAS No. :102390-98-7 MDL No. :MFCD09954454
Formula : C12H19F9O3Si Boiling Point : No data available
Linear Structure Formula :- InChI Key :NYIKUOULKCEZDO-UHFFFAOYSA-N
M.W : 410.35 Pubchem ID :22600765
Synonyms :

Safety of [ 102390-98-7 ]

Signal Word:Warning Class:
Precautionary Statements:P264-P280-P302+P352+P332+P313+P362+P364-P305+P351+P338+P337+P313 UN#:
Hazard Statements:H315-H319 Packing Group:
GHS Pictogram:
Recommend Products
Same Skeleton Products

Technical Information

Historical Records
; ;